
Defectiveness: challenges for
bottom-up lexical description

Roger Evans

Natural Language Technology Group

University of Brighton

10th April 2008

Overview

• Introduction

• Defectiveness

• Formal/Computational Linguistics and
Defectiveness

• Encoding defectiveness – 3 approaches

• Implications for 3 lexical architectures

• Conclusions

Introduction

• Explore defectiveness from the perspective of
lexical description systems and architectures

• Aiming for a better understanding of issues and
options – not theory building

• Formal/Computational Linguistics orientation

Defectiveness – What is it?

• “When some generative lexical process predicts a
form, but the form does not (normally) occur”

• Status of such forms unclear – ungrammatical?
(surprisingly) rare? bad style? incomprehensible?

• Defective forms are accessible in some sense,
and can sometimes be coerced into use

• Idiosyncratic quality of defectiveness is unclear –
you do get regular patterns.

Defectiveness – Where is it?

• Traditionally identified in inflectional paradigms

• Greg Stump’s talk this morning distinguished two
loci for defectiveness phenomena

• Defective-like behaviour also found in Binyanim
(which are more derivational in quality)

• Maybe lurking in other places unnoticed, or under
different names (eg valency alternations)?

Defectiveness – How is it encoded?

• Traditionally on the form feature/value itself (eg in
a paradigm table cell)

• Again, Greg Stump’s talk elaborated this a bit

• Explicit inference systems for describing lexical
objects may support other options (as we shall see
later)

A Formal/CL Perspective on Defectiveness

Three main activities:

• Natural Language Understanding (big)

• Natural Language Generation (small)

• Natural Language Description (grammars,
lexicons and other resources) (small

A Formal/CL Perspective – NLU

• NLU largely ignores defectiveness

– because it never arises?

– because it never hurts to analyse it as non-defective?

• (Also largely ignores ungrammaticality – relying on
very weak notions of grammar, or partial analysis,
to achieve robustness)

A Formal/CL Perspective – NLG

• NLG largely ignores defectiveness

– relies on semantic control to avoid it?

• BUT avoiding defectiveness would be a significant
architectural change for many systems, which
currently only look for lexical gaps at the semantic
or lexeme level, not in the inflectional phase.

– Thus revising ‘canning’ to ‘being able to’ could be a
significant operation

A Formal/CL Perspective – Description

• Underpins the other two areas (to some extent)

• Limited demand has meant limited attention

• But that’s what the rest of this talk is about…

Technical preliminaries – DATR

• Now let’s get a bit more technical.

• First, a little bit of DATR …

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

.

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

.

Must:

<syn cat> = v

<syn form> = 1sing

<mor root> = must

<mor 1sing> = must

<mor prp> == must ing

<mor form> = must

Musting:

<syn cat> = v

<syn form> = prp

<mor root> = must

<mor 1sing> = must

<mor prp> == must ing

<mor form> = must ing

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

.

Must: syn: cat: v

form: 1sing

mor: root: must

1sing: must

prp: must ing

form: must

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor form> == UNDEF

.

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

mor: root: must

1sing: must

prp: must ing

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == UNDEF

.

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor> == UNDEF

.

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor prp> == UNDEF

.

Encoding defectiveness – as ‘missing’

• What can be missing?
– A feature value

– An AVM

– A whole lexical entry

• How is it achieved?
– Failure to specify

– Withdrawal of specification

– Overriding of specification

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor root> == UNDEF

.

Encoding defectiveness – as ‘missing’

• Implications for defectiveness:

– Flexible approach – a range of ways to achieve required
result

– Missing information really is missing – it can’t really be
recovered (without ‘inside knowledge’ of the
descriptions)

– Defectiveness marked like this definitely presents as
‘ungrammatical’

Encoding defectiveness – with a feature

• What can be marked?
– An AVM

– A whole lexical entry

• How is it achieved?
– By adding a <defective> == true statement at an

appropriate point

• Where is it done?
– At the point where the value is specified (or above it in

an inheritance heirachy)

Encoding defectiveness – with a feature

• What can be marked?
– An AVM

– A whole lexical entry

• How is it achieved?
– By adding a <defective> == true statement at an

appropriate point

• Where is it done?
– At the point where the value is specified (or above it in

an inheritance heirachy)

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<defective> == true

.

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

defective: true

Encoding defectiveness – with a feature

• What can be marked?
– An AVM

– A whole lexical entry

• How is it achieved?
– By adding a <defective> == true statement at an

appropriate point

• Where is it done?
– At the point where the value is specified (or above it in

an inheritance heirachy)

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor defective> == true

.

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

defective: true

Encoding defectiveness – with a feature

• Implications for defectiveness:

– Introduces additional features ‘in parallel with’ defective
forms – a bit cumbersome, and dependent on
appropriate external interpretation

– Side-steps ungrammaticality problem – you can choose
whether to take account of this feature or not

– Mixes up words and nonwords in the lexicon

Encoding defectiveness – with a marked value

• What can be marked?

– A value

• How is it achieved?

– By allowing values to take a +defective property (as part
of their internal structure)

– By propagating the +defective property through value
derivation sequences (cf tainted variables in Perl)

• Where is it done?

– Anywhere in the derivation of the missing item

Encoding defectiveness – with a marked value

• What can be marked?

– A value

• How is it achieved?

– By allowing values to take a +defective property (as part
of their internal structure)

– By propagating the +defective property through value
derivation sequences (cf tainted variables in Perl)

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

.

Encoding defectiveness – with a marked value

• What can be marked?

– A value

• How is it achieved?

– By allowing values to take a +defective property (as part
of their internal structure)

– By propagating the +defective property through value
derivation sequences (cf tainted variables in Perl)

• Where is it done?

– Anywhere in the derivation of the missing item

Musting: syn: cat: v

form: prp

mor: root: must

1sing: must

prp: must ing

form: must ing

VERB:

<mor> == “<mor root>”

<mor prp> == “<mor root>” ing

<mor form> == <mor “<syn form>”>

<syn cat> == v

<syn form> == 1sing

.

Must:

<> == VERB

<mor root> == must

.

Musting:

<> == Must

<syn form> == prp

<mor root> == must

.

Encoding defectiveness – with a marked value

• Implications for defectiveness:

– A compromise between the other two approaches

– Requires an extension to the framework (but not unlike
adding probabilities to values)

– Delivers a flexible approach

– Side-steps ungrammaticality problem – you can choose
whether to take account of this feature or not

– Mixes up words and nonwords in the lexicon

Lexical architectures – lexeme-based

• Objects described are lexemes

• Each contains a paradigm table of forms

• Description may also include abstract nodes
capturing generalisations

Lexeme-based lexicon

Category

BANKHOUSETALKWALK

NOUNVERB

Lexeme-based lexicon

Category

BANKHOUSETALKWALK

NOUNVERB

walk

walks

walked

walking

talk

talks

talked

talking

house

houses

bank

banks

Lexical architectures – lexeme-based

• Objects described are lexemes

• Each contains a paradigm table of forms

• Description may also include abstract nodes
capturing generalisations

• Suitable for encoding defectiveness (all models)

• But not great for non-morphological extension (eg
syntax) that cares more about wordforms

Lexical architectures – wordform-based

• Objects described are wordforms

• Generalisations percolate up from wordform nodes
to abstract nodes

• Abstract nodes may look like lexemes

• Abstract nodes may contain paradigmatic
generalisations

Wordform-based lexicon

Category

BANKHOUSETALKWALK

NOUNVERB

houseshousetalkedwalkingwalks banks

Lexical architectures – wordform-based

• Objects described are wordforms

• Generalisations percolate up from wordform nodes
to abstract nodes

• Abstract nodes may look like lexemes

• Abstract nodes may contain paradigmatic
generalisations

• Bottom-up approach better for wordform-oriented
specification

• Indexed on wordform string, so represents both
words and nonwords

Lexical architectures – instance-based

• Objects described are wordform instances

• Instances know about the words around them

• Can use this knowledge to select part-of-speech in
context (for example)

Category

VERBDET PREPNOUN

onsatcatsthe mat

ONSITCATTHE MAT

Instance-based
Lexicon

Category

VERBDET PREPNOUN

onsatcatsthe mat

word5word4word2word1 word6

ONSITCATTHE MAT

word3

Instance-based
Lexicon

Category

VERBDET PREPNOUN

onsatcatsthe mat

word5word2word1 word6

ONSITCATTHE MAT

word3

prev

next

word4

Instance-based
lexicon

<> ==
<pos> == "<pos-table <pos-context> >"
<pos-context> == "<prev pos>" "<prev pos-context>"
<pos-table> == unknown

POS tagging – “one man saw some sheep”

Wordform

one man saw some sheep

<pos-table> == det-s
<pos-table det-s> == card

<pos-table det-s> == noun-s
<pos-table noun-p> == verb

<pos-table det-s> == noun-s
<pos-table $noun $det> == verb

<pos-table> == det-p

<pos-table det-p> == noun-p
<pos-table det-s> == noun-s

word5word2word1 word3 word4

det-s noun-s verb det-p noun-p

Lexical architectures – instance-based

• Objects described are wordform instances

• Instances know about the words around them

• Can use this knowledge to select part-of-speech in
context (for example)

• Fine-grained control over defectiveness behaviour
in context

• Can support all defectiveness forms at the same
time – selected by the sentential context

Conclusions

• Defectiveness is quite vague, but methods
discussed here are quite general

• Interaction with ungrammaticality and
word/nonword issues complicates things – and
this is not a well-studied area in F/CL either.

• Looked at three approaches to representing
defectiveness, each with pros and cons

• Looked at implications for three lexical
architectures

• An instance-based marked value approach is
perhaps the most interesting to pursue

