Roger Evans
Natural Language Technology Group
University of Brighton

10t April 2008

Introduction

Defectiveness

Formal/Computational Linguistics and
Defectiveness

Encoding defectiveness — 3 approaches
Implications for 3 lexical architectures
Conclusions

« Explore defectiveness from the perspective of
lexical description systems and architectures

« Aiming for a better understanding of issues and
options — not theory building

« Formal/Computational Linguistics orientation

“When some generative lexical process predicts a
form, but the form does not (normally) occur”

Status of such forms unclear — ungrammatical?
(surprisingly) rare”? bad style? incomprehensible?

Defective forms are accessible in some sense,
and can sometimes be coerced into use

Idiosyncratic quality of defectiveness is unclear —
you do get regular patterns.

Traditionally identified in inflectional paradigms

Greg Stump’s talk this morning distinguished two
loci for defectiveness phenomena

Defective-like behaviour also found in Binyanim
(which are more derivational in quality)

Maybe lurking in other places unnoticed, or under
different names (eg valency alternations)?

 Traditionally on the form feature/value itself (eg in
a paradigm table cell)

« Again, Greg Stump’s talk elaborated this a bit

 Explicit inference systems for describing lexical

objects may support other options (as we shall see
later)

Three main activities:

* Natural Language Understanding (big)
» Natural Language Generation (small)

* Natural Language Description (grammars,
lexicons and other resources) (small

* NLU largely ignores defectiveness

— because it never arises?
— because it never hurts to analyse it as non-defective?

* (Also largely ignores ungrammaticality — relying on
very weak notions of grammar, or partial analysis,
to achieve robustness)

 NLG largely ignores defectiveness
— relies on semantic control to avoid it?

« BUT avoiding defectiveness would be a significant
architectural change for many systems, which
currently only look for lexical gaps at the semantic
or lexeme level, not in the inflectional phase.

— Thus revising ‘canning’ to ‘being able to’ could be a
significant operation

» Underpins the other two areas (to some extent)
* Limited demand has meant limited attention

 But that’'s what the rest of this talk is about...

Must:
<> ==
<mor

Musting
<> ==

<syn

== “<mor root>"

prp> == “<mor root>"” ing

form> == <mor “<syn form>">

cat> == v

form> == 1lsing

VERB

root> == must

Must

form> == prp

VERB:

<mor> == “<mor root>"
<mor prp> ==

<mor form> == <mor “<syn form>">

<syn cat>

<syn form>

Must:
<> == VERB
<mor root>
Musting:
<> == Must

<syn form>

“<mor root>"

Must:
<syn cat> = v
<syn form> = 1lsing
<mor root> = must
<mor lsing> = must
<mor prp> == must ing
<mor form> = must
Musting:
<syn cat> = v
<syn form> = prp
<mor root> = must
<mor l1lsing> = must
<mor prp> == must ing
<mor form> = must ing

VERB:

<mor> == “<mor root>"
<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
<syn cat> == v
<syn form> == 1lsing

Must:
<> == VERB

<mor root>

Musting:
<> == Must

<syn form>

must

pPrp

Must: |syn:

cat:

form:

1sing

mor:

root:
1sing:
prp:

form:

must
must
must ing

must

Musting:

syn:

cat:

form:

prp

mor:

root:
1sing:
prp:

form:

must
must
must ing

must ing

Encoding defectiveness

« What can be missing?
— A feature value
— An AVM
— A whole lexical entry

« How is it achieved?
— Failure to specity
— Withdrawal of specification
— Overriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

. . Musting: |syn: |cat: v
- What can be missing? orm.
orm: prp
— A feature value mor: |root: must
— An AVM lsing: must
— A whole lexical entry prp: must ing
form: must ing

« How is it achieved?
— Failure to specity
— Withdrawal of specification
— QOverriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

Encoding defectiveness

« What can be missing?
— A feature value mor :

— An AVM
— A whole lexical entry

Musting: |syn:

cat:

form: prp
root: must
1sing: must
prp: must ing

How is it achieved?

— Failure to specity

— Withdrawal of specification
— Overriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

Encoding defectiveness

Musting: |syn: |cat: v

« What can be missing?

form: prp

— A feature value
— An AVM
— A whole lexical entry

« How is it achieved?
— Failure to specity
— Withdrawal of specification
— Overriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

Encoding defectiveness

« What can be missing?
— A feature value
— An AVM
— A whole lexical entry

« How is it achieved?
— Failure to specity
— Withdrawal of specification
— Overriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

. . Musting: |syn: |cat: v
- What can be missing? orm.
orm: prp
— A feature value mor: |root: must
— An AVM lsing: must
— A whole lexical entry prp: must ing
form: must ing

« How is it achieved?
— Failure to specity
— Withdrawal of specification
— QOverriding of specification

Where is it done?
— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
<syn cat> == v Musting: |syn: |cat: v
<syn form> == lsing form: prp
mor: root: must
— An AVM lsing: must
— A whole lexical entry prp: must ing
Must:
<> == VERB
<mor root> == must
Musting: n
<> == Must |
<syn form> == prp
<mor form> == UNDEF

— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>"
<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
<syn cat> == v Musting:
<syn form> == 1lsing
— An AVM
— A whole lexical entry
Must:
<> == VERB
<mor root> == must
Musting: n
<> == Must |
<syn form> == UNDEF

e vvnere is it aone s

syn:

mor:

cat: v

root: must
1sing: must
prp: must ing

— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
<syn cat> == v Musting: |syn: |cat: v
<syn form> == lsing form: prp
— An AVM
— A whole lexical entry
Must:
<> == VERB
<mor root> == must
Musting: n
<> == Must |
<syn form> == prp
<mor> == UNDEF

— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing

<mor form> == <mor “<syn form>">

<syn cat> == v Musting:|syn: |cat: v
<syn form> == lsing form: prp

mor: |root: must

— An AVM lsing: must
— A whole lexical entry

Must:
<> == VERB
<mor root> == must

Musting: n
<> == Must |
<syn form> == prp
<mor prp> == UNDEF

— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
<syn cat> == v Musting: |syn: |cat: v
<syn form> == lsing form: prp
— An AVM
— A whole lexical entry
Must:
<> == VERB
<mor root> == must
Musting: n
<> == Must |
<syn form> == prp
<mor root> == UNDEF

— Anywhere in the derivation of the missing item

 Implications for defectiveness:

— Flexible approach — a range of ways to achieve required
result

— Missing information really is missing — it can’t really be
recovered (without ‘inside knowledge’ of the
descriptions)

— Defectiveness marked like this definitely presents as
‘ungrammatical’

« What can be marked?
— An AVM
— A whole lexical entry

« How is it achieved?

— By adding a <defective> == true statement at an
appropriate point

e Where is it done?

— At the point where the value is specified (or above it in
an inheritance heirachy)

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
Musting: |syn: |cat: v
<syn cat> == v f)
. . form: prp
<syn form> == 1lsing

mor: | root: must

— A whole lexical entry reing: mast

prp: must ing

Must : form: must ing
<> == VERB defective: true
<mor root> == must e> == frue statement at an
Musting:
<> == Must
<syn form> == prp
<defective> == true

» value is specified (or above it in

CAITL 1111 INVITLCALTIWNWY T\ u\.ll-]y)

VERB:

<mor> == “<mor root>" e n eSS

<mor prp> == “<mor root>" ing
<mor form> == <mor “<syn form>">
Musting: |syn: |cat: v
<syn cat> == v f)
. . form: prp
<syn form> == 1lsing

mor: root: must
. 1sing: must
— A whole lexical entry

prp: must ing

form: must ing

Must:
<> == VERB defective: true
<mor root> == must e> == {rue statement at an
Musting:
<> == Must
<syn form> == prp
<mor defective> == true

» value is specified (or above it in

CAITL 1111 INVITLCALTIWNWY T\ u\.ll-]y)

 Implications for defectiveness:

— Introduces additional features ‘in parallel with’ defective
forms — a bit cumbersome, and dependent on
appropriate external interpretation

— Side-steps ungrammaticality problem — you can choose
whether to take account of this feature or not

— Mixes up words and nonwords in the lexicon

« What can be marked?
— A value

« How is it achieved?

— By allowing values to take a +defective property (as part
of their internal structure)

— By propagating the +defective property through value
derivation sequences (cf tainted variables in Perl)

 Where is it done?
— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>"
<mor prp> == “<mor root>"” ing
<mor form> == <mor “<syn form>">
<syn cat> == v ' Musting:|syn: |cat: v
<syn form> == lsing form: prp
mor: |root: must
l1sing: must
e How is it achieved? TR R
Must : form: must ing
<> == VERB ake a +detectiVe property (as part
<mor root> == must I’e)
| >fective property through value
Hastang: cf tainted variables in Perl)
<> == Must
<syn form> == prp

¥ VVIICIC Io IL UUIIC T

— Anywhere in the derivation of the missing item

VERB:

<mor> == “<mor root>"
<mor prp> == “<mor root>"” ing
<mor form> == <mor “<syn form>">
<syn cat> == v ' Musting:|syn: |cat: v
<syn form> == lsing form: prp
mor: |root: must
1sing: must
e How is it achieved? SR e e
Must : form: must ing
<> == VERB ake a +detectiVe property (as part
<mor root> == must I’e)
| >fective property through value
Hasting: cf tainted variables in Perl)
<> == Must
<syn form> == prp
<mor root> == must

— Anywhere in the derivation of the missing item

 Implications for defectiveness:

— A compromise between the other two approaches

— Requires an extension to the framework (but not unlike
adding probabilities to values)

— Delivers a flexible approach

— Side-steps ungrammaticality problem — you can choose
whether to take account of this feature or not

— Mixes up words and nonwords in the lexicon

» Obijects described are lexemes
« Each contains a paradigm table of forms

« Description may also include abstract nodes
capturing generalisations

Lexeme-based lexicon

uk

walk
walks
walked

walking

Category

&

o o

talk house bank
talks houses banks
talked

talking

Obijects described are lexemes
Each contains a paradigm table of forms

Description may also include abstract nodes
capturing generalisations

Suitable for encoding defectiveness (all models)

But not great for non-morphological extension (eg
syntax) that cares more about wordforms

Objects described are wordforms

Generalisations percolate up from wordform nodes
to abstract nodes

Abstract nodes may look like lexemes

Abstract nodes may contain paradigmatic
generalisations

Category

VERB NOUN

Objects described are wordforms

Generalisations percolate up from wordform nodes
to abstract nodes

Abstract nodes may look like lexemes

Abstract nodes may contain paradigmatic
generalisations

Bottom-up approach better for wordform-oriented
specification

Indexed on wordform string, so represents both
words and nonwords

» Obijects described are wordform instances
* |nstances know about the words around them

« Can use this knowledge to select part-of-speech in
context (for example)

Category

/

THE CAT SIT ON MAT

the cats sat on mat

MAT

ON
at Q mat
. word5

Category
SIT

() (=

-
=

Category
/ N L4
THE CAT SIT ON MAT

t@ cats sat on mat
—

POS tagging

<> ==
<pos> == "<pos-table <pos-context> >"

<pos-context> == "<prev pos>" "<prev pos-context>"
<pos-table> == unknown

Wordform

<pos-table det-p> == noun-p

<pos-table det-s> == noun-s
<pos-table det-s> == noun-s

<pos-table> == det-s
<pos-table $noun $det> == verb

<pos-table det-s> == card

<pos-table det-s> == noun-s

<pos-table> == det-p
<pos-table noun-p> == verb

det-s noun-s verb det-p noun-p

Obijects described are wordform instances
Instances know about the words around them

Can use this knowledge to select part-of-speech in
context (for example)

Fine-grained control over defectiveness behaviour
In context

Can support all defectiveness forms at the same
time — selected by the sentential context

Defectiveness is quite vague, but methods
discussed here are quite general

Interaction with ungrammaticality and
word/nonword issues complicates things — and
this is not a well-studied area in F/CL either.

Looked at three approaches to representing
defectiveness, each with pros and cons

Looked at implications for three lexical
architectures

An instance-based marked value approach is
perhaps the most interesting to pursue

