
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Linguistics Linguistics

2017

GENERATING AMHARIC PRESENT TENSE VERBS: A NETWORK GENERATING AMHARIC PRESENT TENSE VERBS: A NETWORK

MORPHOLOGY & DATR ACCOUNT MORPHOLOGY & DATR ACCOUNT

T. Michael W. Halcomb
University of Kentucky, michael.halcomb@uky.edu
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.222

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Halcomb, T. Michael W., "GENERATING AMHARIC PRESENT TENSE VERBS: A NETWORK MORPHOLOGY &
DATR ACCOUNT" (2017). Theses and Dissertations--Linguistics. 19.
https://uknowledge.uky.edu/ltt_etds/19

This Master's Thesis is brought to you for free and open access by the Linguistics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Linguistics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ltt_etds
https://uknowledge.uky.edu/lin
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

T. Michael W. Halcomb, Student

Dr. Andrew Hippisley, Major Professor

Dr. Rusty Barrett, Director of Graduate Studies

1

GENERATING AMHARIC PRESENT TENSE VERBS:
A NETWORK MORPHOLOGY & DATR ACCOUNT

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Arts in Linguistic Theory & Typology

 in the College of Arts and Sciences
 at the University of Kentucky

By

T. Michael W. Halcomb

Co-Directors: Dr. Gregory Stump, Professor of Linguistics and Dr. Andrew
Hippisley, Professor of Linguistics

Lexington, Ky

2017

Copyright © T. Michael W. Halcomb, 2017.

2

ABSTRACT OF THESIS

GENERATING AMHARIC PRESENT TENSE VERBS:
A NETWORK MORPHOLOGY & DATR ACCOUNT

In this thesis I attempt to model, that is, computationally reproduce, the natural
transmission (i.e. inflectional regularities) of twenty present tense Amharic verbs (i.e.
triradicals beginning with consonants) as used by the language’s speakers. I root my
approach in the linguistic theory of network morphology (NM) and model it using the
DATR evaluator. In Chapter 1, I provide an overview of Amharic and discuss the fidel as
an abugida, the verb system’s root-and-pattern morphology, and how radicals of each
lexeme interacts with prefixes and suffixes. I offer an overview of NM in Chapter 2 and
DATR in Chapter 3. In both chapters I draw attention to and help interpret key terms
used among scholars doing work in both fields. In Chapter 4 I set forth my full theory,
along with notation, for generating the paradigms of twenty present tense Amharic verbs
that follow four different patterns. Chapter 5, the final chapter, contains a summary and
offers several conclusions. I provide the DATR output in the Appendix. In writing, my
main hope is that this project will make a contribution, however minimal or sizeable, that
might advance the field of Amharic studies in particular and (computational) linguistics
in general.

KEYWORDS: Amharic, Ethiopic, Network Morphology, DATR

T. Michael W. Halcomb

March 20th, 2017

3

GENERATING AMHARIC PRESENT TENSE VERBS:
A NETWORK MORPHOLOGY & DATR ACCOUNT

By

T. Michael W. Halcomb

Co-Director of Thesis

Co-Director of Thesis

Director of Graduate Studies

Date

Dr. Andrew Hippisley

Dr. Gregory Stump

Dr. Rusty Barrett

5/23/17

4

Dedicated to Emush and Aschalew,
whom I have continually thought about and prayed for throughout this process.

iii

ACKNOWLEDGEMENTS

Although this thesis bears my name as the author, the end-result is only

possible because of the efforts of numerous other individuals who have helped along

the way. First and foremost, I must give thanks to God, who has sustained me through

the duration of my coursework, research, and writing. Thanks are also due to my wife,

Kristi, who has been a constant source of support and encouragement. I hope that my

children, although they only seem to have a partial idea of what it is I have been doing,

have witnessed my love for language as well as what it means to work hard. I am also

grateful to my friend, a native Amharic speaker who offered some feedback for this

project, Fasil Woldemariam, whom I hope to work with more in the future.

I wish, too, to thank the Department of Linguistics at the University of Kentucky.

My time studying here has opened up a new world of interests and possibilities for me.

Thanks to both Dr. Andrew Byrd and Dr. Jennifer Cramer, who early on, not only

allowed me to bring my linguistics to my study of the Bible but encouraged it. I am

particularly grateful to Dr. Mark Lauersdorf, who demonstrated time and again what it

looks like to make an investment in students. Finally, I would like to thank both Dr.

Andrew Hippisley, the one who introduced me to Network Morphology and DATR, and

Dr. Greg Stump, who embodies the notion of a “gentleman and scholar,” for co-

chairing this thesis.

vi

TABLE OF CONTENTS

Acknowledgements……………………………………………………………................iii

Table of Contents………………………………………………………………………...iv

List of Tables…………………………………………………………………………..…v

List of Figures…………………………………………………………………………....vi

Introduction……………………………………………………………………..............1-3

Chapter 1: A Brief Overview of Amharic…………………………………………....…4-9

Chapter 2: A Brief Overview of Network Morphology…………………………...…10-13

Chapter 3: A Brief Overview of DATR………………………………………….…..14-19

Chapter 4: A DATR Account of Simple Present Amharic Verbs………………........20-29

Chapter 5: Summary & Conclusions………………………………………………....30-32

Appendix………………………………………………………………………..........33-53

Abbreviations…………………………………………………………………….............54

Bibliography……………………………………………………………………….…55-58

Vita……………………………………………………………………………………….59

vii

LIST OF TABLES

Table 1, Paradigm of መጀመር | mεd͡ʒεmεr (inf.) ‘to begin’…….………………………...7
Table 2, Path/Value Pairs for ‘love’…………………………………………………....12
Table 3, OPP Example 1: Atoms, Attributes, Classes, and Objects…….……………..14
Table 4, OPP Example 2: Encapsulation, Inheritance, and Paths.….....…………….....15
Table 5, OPP Example 3: Override…………………………………………….…..16-17
Table 6, Output of Theory in DATR………………………………………………......18

viii

LIST OF FIGURES

Figure 1, Nodes in Network Morphology……………………………………………..12

1

Introduction

Today’s world is, in large part, computer-driven. Government offices and

officials, businesses and business owners, educators and students, and many others rely

on technology. This, too, is true of linguists. Indeed, many branches of the government,

business sector, and academy have come to the realization that computational linguists

can be incredibly valuable assets. As Clark et al. (2013: 1) note, “The field of

computational linguistics (CL), together with its engineering domain of natural language

processing (NLP), has exploded in recent years.”

This is the case because many (although, certainly not all!) computational

linguists often work for companies driven by interests in mining “big data.” Increasingly,

for example, computational linguists are gaining expertise in the fields of cognitive

psychology, artificial intelligence, mathematics, formal logic, speech processing, and

more. The ability to leverage inter- and / or cross-disciplinary skills and insights has

taken on great significance. While there is more cross-fertilization today, this

interdisciplinary mindset has been present since the 1950s, the early days of CL’s

predecessor—Machine / Mechanical Translation (MT).1

It is interesting, however, to juxtapose this with the comments of Nick Cercone:

“The narrow approaches to machine translation of the early 1960s pale when compared to

the considerable assortment of methodologies available to the modern computational

linguist” (1983: v). Given the advances since then, a computational linguist in 2017 could

likely make similar judgments of the state of the field in 1983; the same will probably be

true thirty years from now. Nevertheless, just three years after Cercone’s remarks, Ralph

Grishman noted in 1986 that, “It [computational linguistics] has the potential for

1 Also: Machine/Mechanical Learning (ML). For more on the history of MT (Melby, 1995: 13-42).

2

expressing an enormous range of ideas, and for conveying complex thoughts succinctly.

Because it is so integral to our lives, however, we usually take its powers and influence

for granted. The aim of computational linguistics is, in a sense, to capture this power” (1).

 To cite Grishman again, “By understanding language processes in procedural

terms, we can give computer systems the ability to generate and interpret natural

language. This would make it possible for computers to perform linguistic tasks…and

make it much easier for people to access computer-stored data” (1). If one fast-forwards a

bit closer to the present, they will find this perspective still deeply embedded in much of

the literature. One example is displayed in the 2104 work of Roland Hausser who notes

that, “The goal of computational linguistics is to reproduce the natural transmission of

information by modeling the speaker’s production and hearer’s interpretation on a

suitable type of computer” (xix).

 In this thesis, I essentially proceed with Hausser’s definition in mind. To be more

precise: the goal of this thesis is to computationally reproduce the natural transmission

(i.e. inflectional regularities) of present tense Amharic verbs as used by the language’s

speakers. Framed by the linguistic theory of network morphology (NM) and expressed in

the DATR representation language, the aim is to develop a minimally redundant

description of the paradigms for twenty present tense verbs. This, in turn, might assist

interpreters in their efforts to more efficiently and effectively engage, understand, and

utilize the language. Thus, I believe this work has the potential to fit well within the

realm of computer assisted language learning (CALL) by being of pedagogical use to

teachers and of research use to learners. It might also provide a means of spell- or form-

3

checking verbs among readers, writers, and translators. In this work, however, I do not

address natural language processing (NLP) or MT applications.

 I, of course, am not the first to bring Amharic into conversation with CL. Others,

perhaps most notably, Michael Gasser (2010; 2011; 2012), have already undertaken an

immense amount of work on this matter. Moreover, at Addis Ababa University, in

Ethiopia, many students continue to produce quite a bit of CL research on Amharic

(Bayou 2000; Bayu 2002; Gebreegziabher 2011; Alemuu 2013; Demelash 2013; and

Alemu 2013). Yet, to my knowledge, work on the relationship between NM and Amharic

remains to be undertaken. My hope is that this brief study will fill that gap just a bit and,

if possible, make some sort of lasting contribution to the fields of CL and Amharic

studies

4

Chapter 1: A Brief Overview of Amharic

 Amharic, a sister language of Tigrinya, is the national language of Ethiopia

(Tadross and Teklu 2015: 9). It descended from Ge’ez, which is now a strictly liturgical

variety. Amharic belongs in the Afro-Asiatic language family and is characterized by

most as a Semitic language. Through language contact, however, it has also acquired a

number of Cushitic features (Leslau 1945: 59-82; and Little 1974: 267-73).2

Impressively, Amharic boasts nearly 26 million global speakers today and, over the last

several decades, has received quite a bit of interest from linguists.

 In addition to Amharic’s fascinating script, the alphabet—or fidel—is what

linguists often refer to as an abugida. This stands in contrast to Février’s (1995: 330)

earlier label of “neosyllabary” as well as Householder’s (1959: 379-83) notion of

“pseudo-alphabet.” In reaching an understanding of what an abugida is, a helpful place to

begin is with Lyovin’s et al. (2017: 43) note that, “In perhaps all syllabically organized

phonemographies, consonants are treated as more basic entities than vowels are.” In other

scripts, however, “vowels are represented, but are graphically subordinated to any

preceding consonant” (43). Each letter (or orthographic representation), then, typically

consists of a consonant plus a specific vowel. Whereas the consonant always retains the

same sound (but may morph or modify orthographically), the vowel sound changes (cf.

Halcomb 2015). This type of writing system is what Daniels (1990: 731) refers to as an

abugida.

Unlike English, for instance, where each individual letter stands on its own

regardless of whether it is a consonant or vowel, in Amharic each consonant self-contains

2 It is worth mentioning that, while Amharic is not considered on its own in Zaborski (1975: 1-183), it is
used comparatively on numerous occasions and, as such, the work may prove beneficial for some.

5

the vowel (with the exception of the two vowels, አ (Alf) and ዐ (‘Ayn), that essentially

function as consonantal placeholders). Thus, only a character is written when

representing a consonant-vowel pair. For example, in English one would need two

characters to form the word ‘he,’ namely the consonant h and the vowel e. In Amharic, if

one wanted to write the orthographic equivalent of ‘he,’ they would simply write ሀ. Here,

one character does the job whereas English would require two. Since there are seven

vowels in the fidel, each representing its own “order,” the shape of the character

essentially remains the same but takes on a minor change depending on which of the

seven orders (or vowels) it is working in tandem with. The seven orders, according to the

IPA, are represented by a or ε, u, i, ɐ, e, ɪ, o.3 Thus, the letter representing h is going to

slightly change according to each “order” (listed here in sequence) as follows: ሀ | ha, ሁ |

hu, ሂ | hi, ሃ | he, ሄ | hɐ, ህ | hɪ, ሆ | ho.

 It should be noted here that the “sixth order” forms (e.g. ህ, ል, ሕ) are able to,

depending on their position in the word, either keep or lose the vowel both phonetically

and orthographically. A good rule of thumb is that “sixth order” forms defining a syllable

or word boundary drop the vowel. This, however, does not always happen and, so, one

must do due diligence to discern whether or not this is occurring with individual words

on a case-by-case basis.

 Along with these orthographical principles of Amharic, another oft-discussed

feature of this Semitic-based language, especially with regard to the verb system, is its

root-and-pattern system of morphology (RPM) (Schluter 2008: 287-301). Amberber

(2008: 83) describes RPM as being “characterised by a root that consists of consonantal

radicals and a pattern that comprises consonantal positions and vowels. In general, the

3 For either a broad or narrow (i.e. non-IPA) English transliteration see Halcomb (2015).

6

roots encode lexical meaning, whereas the patterns encode grammatical meaning.” I offer

here an example of the root for the word ‘begin,’ whose Amharic radicals are ጀመረ | d͡ʒ-

m-r-.4 It is important to note that, in the immediately preceding parentheses, the -

represents a missing vowel which, in this case, is simply an ε. Thus, ጀመረ results in the

transliteration d͡ʒεmεrε. On the one hand, the consonants, representing the root (or

lexeme), encode the lexical meaning ‘begin.’ On the other hand, the vowels, representing

the pattern, encode grammatical meaning, that is, they convey things like tense, aspect,

mood, and person (the -ε-ε-ε or -1-1-1 or –v-v-v pattern here represents a PRF IND 3MS

form resulting in the specific meaning ‘he began’).

 I should point out here that, in Amharic, gemination is a topic that has received

much attention. It is not within the scope of this project to address it in great length, but it

is worthy of a brief comment. As Fabri et al. (2014: 6) note, “most words contain at least

one geminated consonant, and spoken Amharic lacking gemination sounds quite

unnatural.” They continue, “there are relatively few minimal pairs because of

redundancy” and syntax “must be relied on to disambiguate these words” (6-7). In his

Reference Grammar of Amharic (1995: 12-13), Leslau gives fifteen examples (e.g. ገና |

ɡana ‘still’ - ገና | ɡanna ‘Christmas’ and ዋና | wana ‘swimming’ - ዋና | wanna ‘chief’). In

his Amharic Textbook (1968: 5), Leslau also recycles a few of those examples and offers

a handful of additional ones. As the work of Anberbir and Takara (2009: 47)

demonstrates, when it comes to a computational approach of Amharic, “The lack of

orthography of Amharic to show geminates is the main problem.” Indeed, they developed

their own gemination mark (‘) to attempt to account for this. Rather than insert foreign

4 Since each - represents an e here, that is, the vowel of the “first order,” one could replace the - with a 1.
Such a practice is not uncommon in scholarly Amharic literature. Thus, instead of d͡ʒ-mm-r-, one could
write d͡ʒ1mm1r1. Or, one could simply remove the - or 1 and write d͡ʒmmr, which is also common.

7

marks like this one into the orthography, which might be confusing to readers since it has

not received widespread acceptance, I have chosen to leave the Amharic as it stands.

Even so, I have also opted to include gemination in the transliterations. In Chapter 5, I

have included a brief discussion of gemination within my theory as it pertains to the verb

patterns considered in this project.

 The final item to consider in this section is the notion of affixes, specifically

prefix-suffix pairs. Because I am focusing on present tense verbs in Amharic, both

prefixes and suffixes require attention. Specifically, in the simple present, Amharic

prefixes pair with suffixes denote to grammatical gender and number. With regard to

gender, in Amharic there is no “neuter” grammatical gender and masculine is the default.

Moreover and interestingly, in the first person singular there is no gender distinction (i.e.

grammatical gender is “common,” which may have to do with indexicality (Yasatuda

2010) or indicate the decrease in importance of grammatical gender in Amharic (Kramer

2014). I should note, too, that in formal descriptions of Amharic, as with other Semitic

languages such as Hebrew, it is standard to treat the PRF 3MS as the lexical form.

Because my interest is focused more on present tense verbs, I have chosen not to use that

as my own starting point.

Continuing the line of thought just above, the relevant affixed affixes with their

particular grammatical encodings (along with person) are: እ...አለሁ | ɪ...alɛhu (1CS);5

ት...ለህ | tɪ...alɛ (2MS); ት...ሻል | tɪ...alɛʃ (2FS); ይ...አል | jɪ...al (3MS); ት...ለች | tɪ...lɛt͡ ʃ (3FS);

እን...ለን | ɪnnɪ...lɛn (1CP); ት...ላችሁ | tɪ...lat͡ ʃhu (2CP); and ይ...ሉ | jɪ...lu (3CP). Essentially,

one attaches these various suffixes to the end of the lexeme to denote the grammatical

5 It is important to note that the አ here, which is a consonantal placeholder, is often assimilated into the
preceding consonant-vowel character (via sandhi), thereby forming a “fourth order” form. This, in fact,
happens repeatedly throughout the paradigm.

8

meaning they want to encode. Thus, if one takes the PRF 3MS form ጀመረ | d͡ʒεmmεrε

(‘he began’) and wishes to say instead ‘I begin,’ they do so by changing the pattern and

adding the appropriate suffix, namely, አለሁ | alɛhu. The resultant form is እጀምራለሁ |

ɪd͡ʒεmmɪralɛhu.6 I have included the above data, along with pertinent additional

information, in a table below for ease of viewing.

Paradigm of መጀመር | mεd͡ʒεmεr (inf.) ‘to begin’ (Table 1)

Person, Gender,
Number

Prefix Root & Pattern
1-66-4

Suffix Final Form

1, Comm, Sg
‘I begin’

እ
ɪ

ጀምሯ
+ d͡ʒεmmɪra +

ለሁ
lεhu =

 እጀምሯለሁ
ɪd͡ʒεmmɪralεhu

2, Masc, Sg
‘You begin’

ት
tɪ

ለህ
lεh =

ትጀምሯለህ
tɪd͡ʒεmmɪralε

2, Fem, Sg
‘You begin’

ት
tɪ

ለሽ
lεʃ =

ትጀምሯለሽ
tɪd͡ʒεmmɪralεʃ

3, Masc, Sg
‘He/it begins’

ይ
jɪ

አል
al =

ይጀምሯአል
jɪd͡ʒεmmɪral

3, Fem, Sg
‘She begins’7

ት
tɪ

ለች
lεt͡ ʃ =

ትጀምሯለች
tɪd͡ʒεmmɪralεt͡ ʃ

1, Comm, Pl
‘We begin’

እን
ɪnnɪ

ጀምሯ
+ d͡ʒεmmɪra +

ለን
lεn =

 እንጀምሯለን
ɪnnɪd͡ʒεmmɪralεn

2, Comm, Pl
‘You begin’

ት
tɪ

ችሁ
t͡ ʃhu =

ትጀምሯላችሁ
tɪd͡ʒεmmɪralat͡ ʃhu

3, Comm, Pl
‘They begin’

ይ
jɪ

ሉ
lu =

ይጀምሯሉ
jɪd͡ʒεmmɪralu

The above overview, although succinct, should contain enough information in order to

move forward with an NM analysis of Amharic present tense verbs. Before doing that,

however, there is one last detail that I should mention. In Amharic verbs can, for all

intents and purposes, be broadly grouped according to the number of their lexical

radicals. The norm is to consider five categories: uniradicals, biradicals, triradicals, and

quadriradicals, along with multi-radicals (any lexeme consisting of five or more radicals).

6 This pattern for this is -d͡ʒ-mm-r-l-h, that is, 6d͡ʒ1mm6r4l1h2, where the numbers represent the “order” of
the vowel. This could be represented in general by simply replacing the numbers with “v” for vowel and
“C” for consonant (e.g. vCvCCvCvCvC). I use this general representation later in this work.
7 In Amharic there is no “neuter” grammatical gender and masculine is the default.

9

For present expository purposes, I have chosen to limit my analysis to triradicals

beginning with consonants only. Now that I have presented these details of the Amharic

present tense verb system, I turn my attention to NM.

10

Chapter 2: A Brief Overview of Network Morphology

 According to Brown and Hippisley (2012: 6), “Network Morphology is a

paradigm-based framework: morphological generalizations are gathered at the level of

the paradigm.” They note that the “fundamental object of enquiry in morphology” in a

paradigm-based approach “is the lexeme rather than the morpheme” (6). Thus, in NM, the

notion of the paradigm is central. In addition, and as the name implies, Hippisley asserts

that in NM, “Morphological knowledge is represented as a network, and this allows for

an elegant account of inflectional classes and various other dissociations between syntax

and morphology, such as syncretism and deponency” (2016: 482). As Corbett and Fraser

(1993: 116) note, NM rests on the assumption that “Lexical information is organized as a

network whose basic elements are nodes and facts, and whose structure consists of

relationships between basic elements.”

This coincides with Stump’s comment that, in NM, a “network of nodes can be

represented as a hierarchy in which dominated nodes inherit from dominating nodes”

(2001: 261). That is, a node can inherit facts from another node and, in doing so inherit

specific features that result in generalizations within the paradigm (261). Thus, as Parker

Brody has aptly stated, “the paradigm of an inflectional system is generated by

associating the cells of the paradigm with the morphosyntactic properties they encode. As

each word passes through the model, it draws on the assumptions of the nodes above it,

as well as overrides that stipulate irregularities in the system” (2014: 8). This is what

produces the “elegant account” of inflectional classes that Hippisley refers to and

corresponds with Stewart’s assertion that, in NM, because lexical classes and subclasses

11

are defined in this way, “this allows generalizations to refer to individual nodes or

hierarchically related nodes” (2008: 178).

NM essentially employs the language of object-oriented programming to lay bare

shared morphological features and make connections between shared lexemes and

affixes. As such, NM employs a basic inheritance hierarchy of nodes. In NM, the top-

most nodes are dominant. Moreover, there is a principle of “the longest path wins”

(Hippisley 2010: 36). Stump (2011: 10) points out that this is essentially Panini’s

Principle (or: the Elsewhere Condition), that is, the idea that each cell or block in a

paradigm has rules that become ranked. Hippisley (2016: 489-90) echoes this saying,

“This is the elsewhere statement in lexical phonology, or Paninian default inference, and

is used to resolve competition among rules. In other words, Network Morphology

subscribes to the Panini Determinism Hypothesis” (cf. Brown and Hippisley 2012: 22).

Thus, in an environment where multiple rules could apply, whichever rule has the

greatest degree of specificity wins, thereby preventing the others from being applied.

The hierarchy’s top is the “root node” and at its bottom sit the “leaf nodes.” In

NM the “class nodes” inherit properties from the root node (i.e. the syntactical node).8 A

node inherits properties from a node that dominates it and the inherited properties are said

to be defaults. These defaults, however, are subject to overrides—contrasting properties

specified in a class node. In addition, if there are properties not present in the root node,

due to variation, for example, a class can have its own properties. In NM, the leaf nodes

inherit from the class nodes. The leaf node contains entries that include lexical, semantic,

8 Because different forms in a paradigm convey different meanings or functions—what proponents of NM
often refer to as “features”—they are relevant to syntax. For more on syntax and NM see the Surrey
Morphology Group’s website, particularly the page on morphosyntactic features: http://www.surrey.ac.uk/
LIS/SMG/morphosyntacticfeatures.html#morphosyntacticfeatures. Last accessed 4/6/17.

12

phonological, and morphological information. But for those nodes to manifest, they must

draw features from one or more class nodes. This “drawing” effect is known as

inheritance—inheriting properties (or: facts) from higher nodes. The properties inherited

via paths are represented in Figure 1 below by lines.

Figure 1, Nodes in Network Morphology

The above diagram puts on display the hierarchical and network-based structure of NM. I

will discuss these matters in relation to DATR in the next section, but it will prove

beneficial at this point to clarify a bit of relevant terminology. To do this, I will draw on

the work of Corbett and Fraser (1993: 116-17), as well as Hippisley (2016: 482-83).

 In NM a node is “a named location at which one or more facts may be stored”

(Corbett and Fraser 1993: 117). More precisely, these are “inheritable facts” (Hippisley

2016: 483). Facts themselves consist of attribute:value pairs. It is worth noting, however,

that the literature on NM often uses the language of path:value pairs, too, to mean the

same thing. Moreover, at least in terms of coding NM, angle brackets <> represent paths

(i.e. the means by which an attribute is expressed) and, specifically, path delimiters. This

path’s value may be atomic, another path, or even a mixture of the two. Here I will

simply use the language of attribute:value.

13

According to Corbett and Fraser, “A value may be stated directly or referenced

indirectly by means of another attribute having that value” (Corbett and Fraser 1993:

118). Attributes (or: paths) “may be atomic” or “consist of a list of atoms” and these

“increase in specificity from left to right” (118). Similarly, “Values may be atomic or list-

structured, where a list consists of a sequence of atoms” (118). I consider the “atom” to

be a single or individual property of an attribute or value. While an atom can appear in

list (or: sequence) form, each atom should be taken on its own merit (e.g. see below: love

ing where both ‘love’ and ‘ing’ are atoms) (Evans and Gazdar 1996: 169). In order to

help visualize these rather abstract concepts, below I have provided an example from

Evans and Gazdar based on the lexeme ‘love,’ in the form of a table (169). Note that, in

this table, syn represents “syntactic,” “cat” represents “category,” “mor” represents

“morphological,” and the double equal sign == directs the values assigned to the

attribute.

Path/Value Pairs for Love (Table 2)
attribute path value

<syn cat>
<syn type>
<syn form>
<mor form>

==
==
==
==

verb
main
present participle
love ing

The expected output here would, of course, be ‘loving’ (not loveing). Nevertheless, the

point of the table is to simply give a more concrete image of what NM starts to look like

when employed. I will have occasion below to demonstrate how the attribute-path-value

strings work and factor into the overall NM framework. For now, however, I shall move

on to a discussion of DATR—NM’s formalism (i.e. formally explicit language that is

computationally interpretable).

14

Chapter 3: A Brief Overview of DATR

 As already noted, DATR is essentially a lexical representation language that can

express default inheritance. Thus far, I have not been able to pinpoint any literature in

which the letters in DATR are discussed as an acronym. It seems to be the case however,

that DATR is based on PATR or perhaps, its descendant, PATR-ii. The former,

developed in the mid-1980s, was an acronym for PArsing and TRanslation (Bussmann,

2006, 870). According to Sikkel (2012: 168), PATR has since “fallen into oblivion” and

for that reason the letters in its descendant, PATR-ii, “no longer form an acronym.” For

this reason, DATR is likely not a descendant acronym but merely a name. On the

interfacing of DATR with PATR, see Kilbury (1991: 137-42).

 DATR shares many characteristics with Object Oriented Programming (OOP). As

Seidl et al. note, “object orientation” models were introduced in the 1960s using the

SIMULA programming language. This language was built “on a paradigm that was as

natural to humans as possible to describe the world” (2014: 6). As such, the “object-

oriented approach corresponds to the way we look at the real world” taking seriously the

fact that a) “objects are elements in a system whose data and operations are described,”

and b) objects “interact and communicate with one another,” thus playing a key role in

object-oriented approaches (6). It is no coincidence, then, that some of the terminology is

adopted and used by advocates of NM and DATR. Several terms of significance,

including a few noted already and a few not yet noted, are worthy of attention at this

point. Building on the work of Seidl, with specific regard to terminology and concepts, I

provide these terms and their corresponding definitions in list form below. In addition, I

offer both a running example of code and its output.

15

• Class: A class defines an attribute or set of attributes as well as a value or set of

values for a set of objects. To draw on Seidl’s analogy, for instance, “people have

a name, an address, and a social security number.” As such, the atoms (or:

instances) of these objects create a group or class (6). Unlike OOP, however, in

DATR there are no methods (i.e. actions upon an object within a class).

OPP Example 1: Atoms, Attributes, Classes, and Objects (Table 3)
Person:
 <> == yes
 <has name> == yes
 <has address> == yes
 <has social> == yes
 <has wings> == no.

% Here “Person” is an object while name, address,
% social, and wings are atoms of that object which,
% collectively, denote a class. Each atom has an
% attribute of yes or no but there is also an affirm-;
% ation of all unspecified properties.

• Object: The end-result of compiling a class’s atoms (or: instances) is an object.

For example, a name, address, and a social security number are atoms that,

collectively, denote the object “person” (see above).

• Encapsulation: This is the act of protecting the internal state of an object against

unauthorized access or grouping (7). Stated differently, it is like putting an object

(and hence its atoms) inside a capsule. Importantly, only members of the same

class or subclass have authorized access to that object. Thus, encapsulation

prevents objects of different classes from being grouped together. Thus, if a class

“Car” were to exist, the class “Person” and its atoms could be prevented from

gaining access to the class it (see below). Likewise, “Car” and its atoms could be

prevented from gaining access to the class “Person.”

• Path: Also known as a “Message,” the path allows and is the means by which

objects communicate with one another. Borrowing from Seidl et al., a path “to an

object represents a request to execute an operation. The object itself determines

16

whether and how to execute this operation. The operation is only executed if the

sender is authorized to call the operation” (7).

• Inheritance: This is “a mechanism for deriving new classes from existing

classes” (7-8). For instance, a subclass might derive from an existing (super) class

and, as such, inherit all of its attributes or it may “define new attributes and/or

operations, overwrite the implementation of inherited operations, [or] add its own

code to inherited operations” (8). This allows the “reuse of program or model

parts (thus avoiding redundancy and errors)…use as a modeling aid through a

natural categorization of occurring elements, and support for incremental

development” (8). Important, too, for DATR, are the concepts of direct and

indirect inheritance. The former, per Keller, simply refers to a value specification

expressed directly (i.e. it does not draw/inherit from elsewhere) and the latter

denotes an occasion where “the value is obtained by local inheritance” (1996:

646). (Note: The % symbol functions to section off comments from code.)

OPP Example 2: Encapsulation, Inheritance, and Paths (Table 4)
Person:
 <> == yes
 <has name> == yes
 <has address> == yes
 <has social> == yes
 <has wings> == no.

Female:
 <> == Person.

Car:
 <has brakes> == yes
 <has windows> == yes.

% Here “Person” is an object while name, address,
% social, and wings are atoms of that object which,
% collectively, denote a class. Each atom has an
% attribute of yes or no but there is also an affirm-
% ation of all unspecified properties.

% Here the class “Female” has an empty attribute
% the value is set to “Person” and, thus, the path
% leads it to inherit the defaults from the class
% “Person.”

% Here the class “Car” has two attributes with set
% affirmative values. It does not inherit from Person
% because this theory doesn’t model a connection
% between a car’s brakes or windows and attributes
% a person may have. Encapsulation is present.

17

• Override: Also known as “Overload,” in OOP this “enables an operation to be

defined differently for different types of parameters” (Seidl, 2014: 7). This is a

significant aspect of DATR. Indeed, when Evans and Gazdar (1996: 167) describe

DATR as “a rather spartan nonmonotonic language for defining inheritance

networks with path/value equations,” this seems to be part of what they’re

referring to. The notion of “nonmonotonic” here appears to be borrowed from the

field of logic and, more specifically, nonmonotonic reasoning (NR). According to

Antoniou and Williams (1997: 5), NR “provides formal methods that enable an

intelligent system to operate adequately when faced with incomplete and

changing information.” Because NM and DATR are concerned with matters such

as regularity and semi-regularity as well as lexical-paradigmatic predictability,

and given that languages are living entities that change, a nonmonotonic approach

is necessary.

OPP Example 3: Override (Table 5)
Person:
 <> == yes
 <has name> == yes
 <has address> == yes
 <has social> == yes
 <has wings> == no.

Female:
 <> == Person.

Car:
 <has brakes> == yes
 <has windows> == yes.

Jane:

% Here “Person” is an object while name, address,
% social, and wings are atoms of that object which,
% collectively, denote a class. Each atom has an
% attribute of yes or no but there is also an affirm-
% ation of all unspecified properties.

% Here the class “Female” has an empty attribute
% the value is set to “Person” and, thus, the path
% leads it to inherit the defaults from the class
% “Person.”

% Here the class “Car” has two attributes with set
% affirmative values. It does not inherit from Person
% because this theory doesn’t model a connection
% between a car’s brakes or windows and attributes
% a person may have. Encapsulation is present.

% Here the class “Jane” inherits from the class

18

 <> == Female
 <has social> == no
 <is mean> == no.

hide Person Female.

show
 <has name>
 <has address>
 <has social>
 <has wings>
 <is mean>
 <has brakes>
 <has windows>.

% “Female,” which inherits from the class “Person”
% but also has an override where <has social>
% is not the default “yes” but, rather, overrides it
% and becomes a “no.”
% This just hides what does not need to be seen.

% This shows what is necessary.

• Hierarchy: A hierarchy, particularly with regard to classes (i.e. class hierarchy)

“consists of classes with similar properties” and, as such, generates an inheritance

tree. The hierarchy of classes are built upon and situated within nodes, with the

root node being the top-most and default node. The example code provided here

(see above or below) is structured hierarchically. As Keller (1996: 647) asserts,

“A DATR hierarchy is defined by means of path-value specifications. Inheritance

of values permits appropriate generalizations to be captured and redundancy in

the description of data to be avoided.”

• Multiple Inheritance: Similar to what is described in OOP as “polymorphism,”

this is essentially “the ability to adopt different forms” (Seidl, 2014: 8) with

regard to referencing objects from different classes. I have not included an

example within a table, but it is easy enough to understand how Jane could inherit

properties from multiple classes, namely, “Person” and “Car.”

• Redundancy: In particular, this refers to what OOP programmers refer to as

“spatial redundancy.” A portion of code is said to exhibit (spatial) redundancy if it

“frequently makes the same decision because it is reached by the same code path”

19

(Odersky, 2004: 188). In short: redundancy is the unnecessary repetition of code.

In an effort to keep my code clean, I have not included an example of redundancy

here.

Each of these principles is important for understanding, navigating, and working within

the DATR environment. That, then, brings me to a brief discussion about the platform

from which I choose to run DATR. To be sure, DATR is compatible with and often used

in computing environments like Prolog and Python. I, however, use Raphael Finkel’s

online evaluator.9 Here, one simply pastes in their theory (i.e. code) and presses the

submit button. In Finkel’s environment one can paste in multiple portions of code or a

single theory. Likewise, researchers have the option of telling the evaluator to output the

results in either list format or paradigm format. In the context immediately below, I have

provided examples of both. In the following chapter, however, I will use the latter.

Bearing these items in mind, I now turn to the next chapter, which provides my full

theory along with notation.

Output of Theory in DATR (Table 6)
Fancy Formatting / Paradigms Listed Results

Car <has,brakes> yes
Car <has,windows> yes

Jane <has,name> yes
Jane <has,address> yes
Jane <has,social> no
Jane <has,wings> no
Jane <is,mean> no

Jane <has,brakes> no
Jane <has,windows> no

9 Located at http://www.cs.uky.edu/~raphael/linguistics/DATR.cgi. Last accessed 3/16/17.

20

Chapter 4: A DATR Account of Amharic Simple Present Verbs

 As I noted in Chapter 1, in this study I have chosen to limit my analysis to simple

present verbs of a triradical nature that begin only with consonants. In order to make my

theory slightly more interesting than it might be otherwise, a detail that will also enable

me to demonstrate more of the power and versatility of DATR, I am going to also include

several irregular verbs. In addition to the challenge of transliterating Amharic

orthographical symbols into Roman characters, there are three particular matters

stemming from Amharic morphology that my theory can account for, namely,

phonological change (e.g. deletion/addition), germination, and root-and-pattern

templates.

 Concerning the root-and-pattern issue, the verbs I have chosen, which can be

found in any standard Amharic dictionary, follow four different patterns. The first set has

a stem that follows a CvCCvCv stem pattern, the second a CvCvCv pattern, the third a

Cv pattern, and the fourth a CvCvCvCv pattern. DATR easily handles all four of these,

even a few irregulars (see below). With regard to phonological change, when a sixth

order I in a stem follows d, n, r, z, or l (all alveolars) deletion occurs. Similarly, when a

fourth order form follows m, b, l, r, ɡ, q, t or t͡ ʃ, it changes to a third order form and a is

added (i.e. addition occurs). This actually affects the root-and-pattern template, causing it

to change. Again, DATR is easily able to account for these changes. In addition, and as I

mentioned earlier in this work, germination is present in Amharic but not

orthographically. In my theory I am able to account for gemination, which is not

represented orthographically in Amharic, by employing transliteration to show where it

does occur. In my theory I do this by providing a transliteration in IPA.

21

 In this chapter, then, I provide the theory I have developed and also offer notation.

The theory is, of course, not exhaustive when it comes to the Amharic verb system. It

does not, for example, take into consideration other tenses, radicals, or even triradical

forms that begin with vowels. If one wishes to use this code, it is likely that in attempting

to copy it from this file and pasting it into Finkel’s DATR evaluator will not work. This is

the case because the word processors will probably introduce interference. Theories

should be saved as simple text files with UTF8 encoding.

22

%
%Created by T. Michael W. Halcomb %
%Version 1: 5/1/17 %
%Title: Amharic Verbs %
%Purpose: Illustrates inheritance, overrides, alternative values%
% of Amharic simple present verbs in DATR %
%Email: Michael.Halcomb@AsburySeminary.edu %
%Version: 2 %
%

#vars $Cons1: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j.
#vars $Cons2: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j.
#vars $Cons3: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j.
#vars $Cons4: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j.

%variable declarations; these variables are the consonants used in the sample verbs and
% utilized %by the “Stem” node

Mor_Verb:
 <syn cat> == verb
 <roman> == Prefix:<> “<stem>” Tense_suffix:<> Agr_suffix:<>
 <amharic> == TRANSLIT:<“<roman>”>.

%Mor_Verb is the root node of the inheritance network
%verb denotes the syntactical category
%<roman> sets the path value to specified items (e.g. prefix followed by stem, etc.) and
%each of these will be in Roman (IPA) characters; the code, then, is based on the Roman
%transliteration scheme
%Prefix:<> calls down to the Prefix node; “<stem>”, Tense_suffix:<>, and Agr_suffix:<>
%do the same;
%<amharic> calls down to the TRANSLIT node where the Amharic letters are matched
%with their Roman counterparts, resulting in the Amharic being transliterated in a letter-
%-for-letter fashion

Triradicals:
 <> == Mor_Verb
 <stem> == Stem:<”<root>”>
 <vowel1> == ε
 <vowel2> == ɪ
 <vowel3> == a
 <vowel3 2 fem sg simp_pres> == i a.

%This begins the first of the class nodes
%The Triradicals node, as well as those that follow it (e.g. Triradicals_Alt,
%Triradicals_Irregular, Triradicals_Irregular2, and Triradicals_Irregular3) all inherit from
%the root node, which calls down to the Stem node thereby selecting the appropriate

23

%transliteration pattern; specifics concerning vowel patterns are provided here, allowing
%for different patterns or overrides; note, for example, that each Triradical node has a
%different vowel pattern and different vowel changes (or a lack thereof)

Triradicals_Alt:
 <> == Mor_Verb
 <stem> == Stem2:<”<root>”>
 <vowel3> == a
 <vowel3 2 fem sg simp_pres> == i a.

Triradicals_Irregular:
 <> == Mor_Verb
 <stem> == Stem3:<”<root>”>
 <roman> == “<stem>” Agr_suffix:<>
 <amharic> == TRANSLIT:<”<roman>”>.

Triradicals_Irregular2:
 <> == Triradicals_Irregular
 <roman> == “<stem>” Tense_suffix:<> Agr_suffix:<>
 <root> == a
 <vowel1> ==.

Triradicals_Irregular3:
 <> == Triradicals
 <stem> == Stem4:<”<root>”>
 <vowel1> == ε
 <vowel2> == ε
 <vowel3> == ɪ
 <vowel4> == a
 <vowel4 2 fem sg simp_pres> == i a.

Prefix:
 <1> == ɪ <ɪ>
 <2> == t ɪ
 <3> == j ɪ
 <3 fem> == <2>
 <ɪ comm pl> == n n ɪ
 <> ==.

%The Prefix node creates a means of avoiding redundancy in the code due in large part to
%its economical use of the letter ɪ, which is used in several different environments within
%the prefix slot

24

Stem:
 <$Cons1 $Cons2 $Cons3> == $Cons1 “<vowel1>” $Cons2 $Cons2 “<vowel2>”
$Cons3 “<vowel3>”.

Stem2:
 <$Cons1 $Cons2 $Cons3> == $Cons1 “<vowel1>” $Cons2 “<vowel2>” $Cons3
“<vowel3>”.

Stem3:
 <$Cons1> == $Cons1 “<vowel1>”.

Stem4:
 <$Cons1 $Cons2 $Cons3 $Cons4> == $Cons1 “<vowel1>” $Cons2 “<vowel2>”
$Cons3 “<vowel3>” $Cons4 “<vowel4>”.

%The Stem node reveals four distinct verb patterns; this root-and-pattern template forms
%the basis for the code’s transliterator

Tense_suffix:
 <> == l l ε
 <3 masc sg simp_pres> == l
 <2 comm pl simp_pres> == l l a
 <3 comm pl simp_pres> == l l u.

%The Tense_suffix node simply indicates the tense suffixes

Agr_suffix:
 <1 comm sg simp_pres> == h u
 <2 masc sg simp_pres> == h
 <2 fem sg simp_pres> == ʃ
 <3 fem sg simp_pres> == t͡ ʃ
 <1 comm pl simp_pres> == n
 <2 comm pl simp_pres> == t͡ ʃ h u
 <> ==.

%The Agr_suffix node simply indicates the person/number/gender agreement suffixes

TRANSLIT:
 <a> == አ <>
 <b a> == ባ <>
 <b i a> == ቢ አ <>
 <b ɪ> == ብ <>
 <b b ɪ> == ብ <>
 <t͡ ʃ> == ች <>
 <t͡ ʃt͡ ʃ> == ች <>
 <t͡ ʃt͡ ʃ a> == ቸ <>

25

 <t͡ ʃt͡ ʃ ɪ> == ቸ <>
 <t͡ ʃ' a> == ጫ <>
 <t͡ ʃ' i> == ጪ <>
 <d a> == ዳ <>
 <d ε> == ደ <>
 <φ ε> == ፈ <>
 <g a> == ጋ <>
 <g ε> == ገ <>
 <g g ε> == ገ <>
 <g i a> == ጊ አ <>
 <ɲ ɲ> == ኝ <>
 <h> == ህ <>
 <h u> == ሁ <>
 <ɪ> == እ <>
 <d͡ʒ a> == ጃ <>
 <d͡ʒ ε> == ጀ <>
 <d͡ʒ i a> == ጂ አ <>
 <k ɪ> == ክ <>
 <k k ε> == ከ <>
 <k k ɪ> == ክ <>
 <l> == ል <>
 <l a> == ላ <>
 <l i a> == ሊ አ <>
 <l ɪ> == ል <>
 <l l a> == ላ <>
 <l l ɪ> == ል <>
 <l l ε> == ለ <>
 <l l u> == ሉ <>
 <m a> == ማ <>
 <m ε> == መ <>
 <m i a> == ሚ አ <>
 <m ɪ> == ም <>
 <m m ε> == መ <>
 <m m i a> == ሚ አ <>
 <m m ɪ> == ም <>
 <n> == ን <>
 <n a> == ና <>
 <n ε> == ነ <>
 <n n ε> == ነ <>
 <n n ɪ> == ን <>
 <q a> == ቃ <>
 <q ε> == ቀ <>
 <q ɪ> == ቅ <>
 <q i a> == ቂ አ <>
 <q q ε> == ቀ <>
 <q q ɪ> == ቅ <>

26

 <r> == ር <>
 <r a> == ራ <>
 <r i a> == ር አ <>
 <s a> == ሳ <>
 <s ε> == ሰ <>
 <ʃ> == ሽ <>
 <ʃ a> == ሻ <>
 <ʃ ε> == ሸ <>
 <ʃ i a> == ሺ አ <>
 <t a> == ታ <>
 <t ε> == ተ <>
 <t ɪ> == ት <>
 <t' ε> == ጠ <>
 <w> == ው <>
 <w ε> == ወ <>
 <w w ε> == ወ <>
 <j ɪ> == ይ <>
 <j j ɪ> == ይ <>
 <> ==.

%The TRANSLIT node is where the Roman characters corresponding to Amharic letters
%are transliterated

Arrive:
 <> == Triradicals_Alt
 <gloss> == arrive
 <root> == d r s
 <root 2 fem sg simp_pres> == d r ʃ
 <vowel1> == ε
 <vowel2> == .

%Arrive is the first of the leaf nodes; it inherits from the Triradicals_Alt node; it is built
%on the root “d r s,” which is transliterated into Amharic; note that in the 2 fem sg the s
%becomes ʃ; note the override in terms of vowel patterning here

Ask:
 <> == Triradicals
 <gloss> == ask
 <root> == t' j q.

%Ask inherits from the Triradicals class and has no irregularities or overrides

Be:
 <> == Triradicals_Irregular
 <gloss> == be
 <root> == n

27

 <vowel1> == ε
 <roman 1 comm sg simp_pres> == <stem> ɲ ɲ
 <roman 3 masc sg simp_pres> == <stem> w
 <roman 3 comm pl simp_pres> == <stem> t͡ ʃt͡ ʃ a w.

%Note the irregularities in Be (irregular in most of the world’s languages) and thus the
%overrides (roman 1 comm, 3 masc, and 3 comm) used to account for this

Beget:
 <> == Triradicals_Alt
 <gloss> == beget
 <root> == w l d
 <root 2 fem sg simp_pres> == w l d͡ʒ
 <vowel1> == ε
 <vowel2> == .

Begin:
 <> == Triradicals
 <gloss> == begin
 <root> == d͡ʒ m r.

Break:
 <> == Triradicals
 <gloss> == break
 <root> == s b r.

Build:
 <> == Triradicals
 <gloss> == build
 <root> == g n b
 <vowel2> == ε.

Carry:
 <> == Triradicals
 <gloss> == carry
 <root> == ʃ k m
 <vowel2> == ε.

Carve:
 <> == Triradicals
 <gloss> == carve
 <root> == w q r.

Exist:
 <> == Triradicals_Irregular2
 <gloss> == exist.

28

Have:
 <> == Exist
 <gloss> == have
 <roman 1 comm sg simp_pres> == <stem> Tense_suffix:<> ɲ ɲ
 <roman 3 masc sg simp_pres> == <stem> Tense_suffix:<> w
 <roman 3 comm pl simp_pres> == <stem> Tense_suffix:<> t͡ ʃt͡ ʃ a w.

Plant:
 <> == Triradicals
 <gloss> == plant
 <root> == t k l.

Play:
 <> == Triradicals_Alt
 <gloss> == play
 <root> == t͡ ʃ' w t
 <root 2 fem sg simp_pres> == t͡ ʃ' w t͡ ʃ'
 <vowel1> == a
 <vowel2> == ε
 <vowel3> == a.

Search:
 <> == Triradicals
 <gloss> == search
 <root> == φ l g.

Sit:
 <> == Triradicals
 <gloss> == sit
 <root> == q m t
 <root 2 fem sg simp_pres> == q m t͡ ʃ'
 <vowel2> == ε.

Speak:
 <> == Triradicals
 <gloss> == speak
 <root> == n g r
 <vowel1> == a
 <vowel2> == ε.

Throw:
 <> == Triradicals_Irregular3
 <gloss> == throw
 <root> == w r w r.

29

Use:
 <> == Triradicals
 <gloss> == use
 <root> == t q m
 <vowel2> == ε.

Wake:
 <> == Triradicals_Irregular3
 <gloss> == wake
 <root> == q s q s.

Walk:
 <> == Triradicals
 <gloss> == walk
 <root> == r m d
 <root 2 fem sg simp_pres> == r m d͡ʒ
 <vowel1> == a
 <vowel2> == ε.

%Begin show and hide of elements to be shown and hidden

#show:
 <roman 1 comm sg simp_pres>
 <roman 2 masc sg simp_pres>
 <roman 2 fem sg simp_pres>
 <roman 3 masc sg simp_pres>
 <roman 3 fem sg simp_pres>
 <roman 1 comm pl simp_pres>
 <roman 2 comm pl simp_pres>
 <roman 3 comm pl simp_pres>
 <amharic 1 comm sg simp_pres>
 <amharic 2 masc sg simp_pres>
 <amharic 2 fem sg simp_pres>
 <amharic 3 masc sg simp_pres>
 <amharic 3 fem sg simp_pres>
 <amharic 1 comm pl simp_pres>
 <amharic 2 comm pl simp_pres>
 <amharic 3 comm pl simp_pres>.

#hide:
Triradicals Triradicals_Alt Triradicals_Irregular Triradicals_Irregular2 Stem Mor_Verb
TRANSLIT Prefix Tense_suffix Agr_suffix.

30

Chapter 5: Summary & Conclusions

In this thesis I have attempted to computationally reproduce the natural

transmission of twenty present tense Amharic verbs (i.e. triradicals beginning with

consonants) as modeled by the language’s speakers. I have rooted my approach in the

linguistic theory of network morphology (NM) and modeled it using the DATR parsing

engine. One of my hopes is that this work might assist those wanting to work with

Amharic in their efforts to more efficiently and effectively engage, understand, and

utilize the language for a variety of purposes such as learning Amharic, learning about

Amharic, or perhaps cross-linguistic analysis. As noted earlier, I believe this work has the

potential to fit well within the realm of computer assisted language learning (CALL) by

being of pedagogical use to teachers and of research use to learners. Likewise, it might

also provide a means of spell- or form-checking verbs among readers, writers, and

translators.

In the first chapter, I provided an overview of Amharic. Specifically, I discussed

the fidel as an abugida, the verb system’s root-and-pattern morphology, and how radicals

of each lexeme interacts with prefixes and suffixes. Following that, in Chapter 2, I

discussed NM. I drew attention to the fact that NM is concerned with lexemes at the

paradigm level. I also noted drew attention to the fact that NM, theoretically speaking,

shares many similarities with OOP. In addition, I provided clarity with regard to a

handful of key terms used in NM literature.

An overview of DATR was the focus of Chapter 3. As with the previous chapter,

here I showed connections with OOP and aimed to shed light on a number of additional

key terms and concepts. To reiterate, each of the principles addressed there is important

31

for understanding, navigating, and working within the DATR environment. Finally, in

Chapter 4, I set forth my full theory for parsing twenty present tense Amharic verbs. As

the code makes clear, I divided those twenty verbs into four sets based on their shared

morphological features. The first contained a CvCCvCv stem pattern, the second a

CvCvCv pattern, the third a Cv pattern, and the fourth a CvCvCvCv pattern. For the

DATR output, please see the Appendix.

In writing, my main hope is that this project will make a contribution, however

minimal or sizeable, to the field of Amharic studies in particular and (computational)

linguistics in general. In terms of scalability, I have been working extensively on writing

theory for the entire verb system but because it is not yet close to being finished, it will

not be able to bear fruit until sometime in the future. I do believe, however, that I am off

to a good start and this project, in and of itself, hopefully stands as a testament to that.

Considering other binyanim, including those beginning with vowels, would be part of

such a project. Perhaps a fuller discussion of other morphosyntactic feature sets (e.g.

gender, number, person, case, definiteness, respect, etc.) would be useful, too. Amharic,

for instance, has more and less formal verb forms, which grammatical gender factors

heavily into and, as such, some focus on that might bear fruit.

As I have already stated, I view this project as a work in progress. While quite a

bit has been written on Amharic, little has been done in terms of utilizing DATR. I hope

to do more in that regard particularly with regard to the verb. Thus, I will increase the

scope of coverage as it pertains to the verb system. Perhaps I will venture into nouns as

well. As I continue to learn more about the intricacies of DATR, for example, I will be

able to tighten up the code and make it more sophisticated at least in part by weeding out

32

any looming unnecessary redundancies. As I was finishing up this work, for instance, Dr.

Greg Stump demonstrated a couple of ways I might begin to do that. Unfortunately, I

simply did not have time to try to put that into action here. From a theoretically

standpoint, I am interested in looking deeper into PATR and PATR-ii as well as

exploring in a more in-depth manner the possible relationship between DATR and OOP.

As I plan to continue working on this, I hope others will be encouraged and enter

the fray. This could obviously be extended to other parts of speech in Amharic, especially

its rich nominal system. Perhaps someone will rise to the occasion and purse such a task.

At the end of the day, if I have piqued the reader’s attention in either Amharic or DATR

or even both, then, as minute as that may seem, I believe will have accomplished much.

33

Appendix

 Beginning on the next page is the output of my DATR theory. These paradigms

were generated using Raphael Finkel’s online DATR evaluator and, as such, are in the

standard format (layout, color scheme, etc.) it produces. I have arranged the output tables

in alphabetical order with the Roman forms preceding the Amharic. The abbreviations in

the table, which, for computational purposes I distinguish from the abbreviations in the

body of this work and on the Abbreviations page near the end of this document, are

defined as follows: simp_pres = simple present; sg = singular; pl = plural; comm =

common; 1, 2, and 3 = first, second, and third person respectively; masc = masculine; and

fem = feminine.

34

Arrive

35

Ask

36

Be

37

Beget

38

Begin

39

Break

40

Build

41

Carry

42

Carve

43

Exist

44

Have

45

Plant

46

Play

47

Search

48

Sit

49

Speak

50

Throw

51

Use

52

Wake

53

Walk

54

Abbreviations

 The abbreviations below, which are used throughout the body of this work, follow

the Leipzig glossing format.

1 first person
2 second person
3 third person
C common (not listed in Leipzig)
F feminine
Inf infinitve
M masculine
Sg singular
Simp_pres simple present tense
PRF perfect tense
Pl Plural

55

Bibliography

Alemu, Besufikad. 2013. A Named Entity Recognition for Amharic. Master’s thesis at
 Addis Ababa University. Addis Ababa, Ethiopia.

Amberber, Mengistu. 2008. Semantic Primes in Amharic. In C. Goddard (ed.), Cross-
 Linguistic Semantics, 83-119. Philadelphia, PA: John Benjamins Publishing.

Antoniou G., and Mary-Anne Williams. 1997. Nonmonotonic Reasoning. Cambridge,
 MA: MIT Press.

Bayou, Abiyot. 2000. Developing Automatic Word Parser for Amharic Verbs and Their
 Derivation. Master’s thesis at Addis Ababa University. Addis Ababa, Ethiopia.

Bayu, Bayu. 2002. Automatic Morphological Analyzer for Amharic: An Experiment
 Involving Unsupervised Learning and Autosegmental Analysis Approaches.
 Master’s thesis at Addis Ababa University. Addis Ababa, Ethiopia.

Brody, Parker. 2014. Inferential-Realizational Morphology and Affix Ordering: Evidence
 from the Agreement Patterns of Basque Auxiliary Verbs. Master’s thesis at the
 University of Kentucky.

Brown, Dunstan and Andrew Hippisley. 2012. Network Morphology. Cambridge:
 Cambridge University Press.

Bussmann, Hadumod. 2006. In Gregory P. Trauth and Kerstin Kazzazi (eds.), Routledge
 Dictionary of Language and Linguistics. New York: Routledge.

Cercone, Nick. 1983. Computational Linguistics. Oxford: Pergamon Press.

Clark, Simon C., Fox, Chris, and Shalom Lappin. 2013. The Handbook of Computational

Linguistics and Natural Language Processing. Malden, MA: Wiley-Blackwell.

Corbett, Greville G. and Norman M. Fraser. 1993. Network Morphology: A DATR
Account of Russian Nominal Inflection. In Journal of Linguistics 29/1. 113-42.

Daniels, Peter T. 1990. Fundamentals of Grammatology. In Journal of the American
 Oriental Society 110/4. 727-31.

Demelash, Biruk. 2013. Linguistically Motivated Amharic Information Retrieval.
 Master’s thesis at Addis Ababa University. Addis Ababa, Ethiopia.

Evans R., and G. Gazdar. 1996. DATR: A Language for Lexical Knowledge

Representation. In Computational Linguistics 22/2. 167-216.

56

Fabri, R. 2014. Linguistic Introduction: The Orthography, Morphology and Syntax of
 Semitic Languages. In I. Zitouni (ed.), Natural Language Processing of Semitic
 Languages. Heidelberg: Springer.

Février, James G. 1995. Histoire de l’ecriture. Paris: Pavot.

Gasser, Michael and Mulugeta Wondwossen. 2012. Learning Morphological Rules for
 Amharic Verbs Using Inductive Logic Programming. Paper presented at
 SALTMIL-AfLaT.

Gasser, Michael. 2010. A Dependency Grammar for Amharic. Paper presented at the
 Workshop on Language Resources and Human Language Technologies for
 Semitic Languages. Bloomington, Indiana.

______. 2011. HornMorpho: A System for Morphological Processing of Amharic,
 Oromo, and Tigrinya. Paper presented at the Conference on Human Language
 Technology for Development. Alexandria, Egypt.

______. 2012. Toward a Rule-Based System for English-Amharic Translation. Paper

presented at the SALTMIL/AfLaT Conference. Istanbul, Turkey.

Gebreegziabher, Nirayo H. 2011. Modeling Improved Amharic Syllabification Algorithm.
 Master’s thesis at Addis Ababa University. Addis Ababa, Ethiopia.

Grishman, Ralph. 1986. Computational Linguistics: An Introduction. New York:
 Cambridge University Press, 1986.

Halcomb, T. Michael W. 2015. Introducing Amharic: An Interactive Workbook.
 Wilmore, KY: GlossaHouse, 2015.

Hausser, Roland. 2014. Foundations of Computational Linguistics: Human-Computer

Communication in Natural Language. Berlin, Heidelberg: Springer.

Hippisley, Andrew. 2010. Lexical Analysis. In Nitin Indurkhya and Fredrick J. Damerau
 (eds.), Handbook of Natural Language Processing. Boca Raton, FL: Chapman &

Hall/CRC. 31-58.

________. 2016. Network Morphology. In Andrew Hippisley and Gregory
 Stump (eds.), The Cambridge Handbook of Morphology. Cambridge: Cambridge
 University Press. 482-510.

Householder, Fred W. 1959. Review of Chadwick’s The Decipherment of Linear B. In

Classical Journal 54. 379-83.

57

Keller, Bill. 1996. An Evaluation Semantics for DATR Theories. In COLING-96:
Proceedings of the 16th Conference on Computational Linguistics. Copenhagen:
Copenhagen Center for Sprogteknologi. 646-51.

Kilbury, James, Petra Naerger and Ingrid Rinz. 1991. DATR as a Lexical Component for
 PATR. In Proceedings of the 5th EACL Conference. 137-42.

Kramer, Ruth. 2010. “Gender in Amharic: A Morphosyntactic Approach to Natural and

Grammatical Gender.” In Language Sciences 43. 102-15.

Leslau, Wolf. 1945. The Influence of Cushitic on the Semitic Languages of Ethiopia: A

Problem of Substratum. Word 1/1. 59-82.

___________. 1968. Amharic Textbook.Wiesbaden: Otto Harrassowitz.

___________. 1995. Reference Grammar of Amharic.Wiesbaden: Otto Harrassowitz.

Little, Greta D. 1974. “Syntactic Evidence of Language Contact: Cushitic Influence in

Amharic.” In Roger W. Shuy and Charles-James N. Bailey (eds.), Towards
Tomorrow’s Linguistics. Washington D.C.: Georgetown University Press. 267-75.

Lyovin, Anatole, Brett Kessler, and William R. Leben. 2017. An Introduction to the
 Languages of the World. Oxford: Oxford University Press.

Melby, Alan K. and C. Terry Warner. 1995. The Possibility of Language: A Discussion of
 the Nature of Language with Implications for Human and Machine Translation.
 Philadelphia, PA: John Benjamins Publishing.

Odersky, Martin. 2004. ECOOP 2004: Object-Oriented Programming: 18th European

Conference Proceedings. Berlin, Heidelberg: Springer.

Schluter, Kevin. 2008. Amharic Internal Reduplication and Foot Structure: A Word-
 Based Approach. Kansas Working Papers in Linguistics 31. 287-301.

Seidl, Martina, M. Scholz, C. Huemer, and G. Kappel. 2014. UML @ Classroom: An

Introduction to Object-Oriented Programming. Berlin, Heidelberg: Springer.

Sikkel, Klaas. 2012. Parsing Schemata: A Framework for Specification and Analysis of
 Parsing Algorithms. Leiden: Springer.

Stewart, Tom. 2008. A Consumer’s Guide to Contemporary Morphological Theories. In
 Ohio State University Working Papers in Linguistics 58. 138-230.

Stump, Gregory. 2001. Inflectional morphology: A Theory of Paradigm Structure.
 Cambridge: Cambridge University Press.

58

Sudo, Yasutada. “The Syntax and Semantics of Indexical Shifting in Modern Uyghur.”
Unpublished Generals Paper (2010).

Tadross, Andrew and Abraham Teklu. 2015. The Essential Guide to Amharic the
 National Language of Ethiopia. Oakland, CA: Peace Corps, 2015.

Zaborski, Andrzej. 1975. The Verb in Cushitic. Krakow: Naklad Universitetu
 Jagiellenskiego.

59

Vita

 Bachelor of Science; Biblical Studies and Youth & Family Ministries, Kentucky
 Christian University

 Master of Divinity; Lexington Theological Seminary

 Master of Arts in Biblical Studies; Asbury Theological Seminary

 Doctor of Philosophy in Biblical Studies; Asbury Theological Seminary

 Master of Arts in Linguistic Theory & Typology; University of Kentucky

 T. Michael W. Halcomb

	GENERATING AMHARIC PRESENT TENSE VERBS: A NETWORK MORPHOLOGY & DATR ACCOUNT
	Recommended Citation

	UK Thesis Final Draft - Generating Amharic Verbs - 5.23.17.pdf

