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ABSTRACT OF THESIS 
 
 
 
 

GENERATING AMHARIC PRESENT TENSE VERBS: 
A NETWORK MORPHOLOGY & DATR ACCOUNT 

 
 

In this thesis I attempt to model, that is, computationally reproduce, the natural 
transmission (i.e. inflectional regularities) of twenty present tense Amharic verbs (i.e. 
triradicals beginning with consonants) as used by the language’s speakers. I root my 
approach in the linguistic theory of network morphology (NM) and model it using the 
DATR evaluator. In Chapter 1, I provide an overview of Amharic and discuss the fidel as 
an abugida, the verb system’s root-and-pattern morphology, and how radicals of each 
lexeme interacts with prefixes and suffixes. I offer an overview of NM in Chapter 2 and 
DATR in Chapter 3. In both chapters I draw attention to and help interpret key terms 
used among scholars doing work in both fields. In Chapter 4 I set forth my full theory, 
along with notation, for generating the paradigms of twenty present tense Amharic verbs 
that follow four different patterns. Chapter 5, the final chapter, contains a summary and 
offers several conclusions. I provide the DATR output in the Appendix. In writing, my 
main hope is that this project will make a contribution, however minimal or sizeable, that 
might advance the field of Amharic studies in particular and (computational) linguistics 
in general. 
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Introduction 
 

Today’s world is, in large part, computer-driven. Government offices and 

officials, businesses and business owners, educators and students, and many others rely 

on technology. This, too, is true of linguists. Indeed, many branches of the government, 

business sector, and academy have come to the realization that computational linguists 

can be incredibly valuable assets. As Clark et al. (2013: 1) note, “The field of 

computational linguistics (CL), together with its engineering domain of natural language 

processing (NLP), has exploded in recent years.” 

This is the case because many (although, certainly not all!) computational 

linguists often work for companies driven by interests in mining “big data.” Increasingly, 

for example, computational linguists are gaining expertise in the fields of cognitive 

psychology, artificial intelligence, mathematics, formal logic, speech processing, and 

more. The ability to leverage inter- and / or cross-disciplinary skills and insights has 

taken on great significance. While there is more cross-fertilization today, this 

interdisciplinary mindset has been present since the 1950s, the early days of CL’s 

predecessor—Machine / Mechanical Translation (MT).1 

It is interesting, however, to juxtapose this with the comments of Nick Cercone: 

“The narrow approaches to machine translation of the early 1960s pale when compared to 

the considerable assortment of methodologies available to the modern computational 

linguist” (1983: v). Given the advances since then, a computational linguist in 2017 could 

likely make similar judgments of the state of the field in 1983; the same will probably be 

true thirty years from now. Nevertheless, just three years after Cercone’s remarks, Ralph 

Grishman noted in 1986 that, “It [computational linguistics] has the potential for 
                                                 
1 Also: Machine/Mechanical Learning (ML). For more on the history of MT (Melby, 1995: 13-42). 
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expressing an enormous range of ideas, and for conveying complex thoughts succinctly. 

Because it is so integral to our lives, however, we usually take its powers and influence 

for granted. The aim of computational linguistics is, in a sense, to capture this power” (1). 

 To cite Grishman again, “By understanding language processes in procedural 

terms, we can give computer systems the ability to generate and interpret natural 

language. This would make it possible for computers to perform linguistic tasks…and 

make it much easier for people to access computer-stored data” (1). If one fast-forwards a 

bit closer to the present, they will find this perspective still deeply embedded in much of 

the literature. One example is displayed in the 2104 work of Roland Hausser who notes 

that, “The goal of computational linguistics is to reproduce the natural transmission of 

information by modeling the speaker’s production and hearer’s interpretation on a 

suitable type of computer” (xix). 

 In this thesis, I essentially proceed with Hausser’s definition in mind. To be more 

precise: the goal of this thesis is to computationally reproduce the natural transmission 

(i.e. inflectional regularities) of present tense Amharic verbs as used by the language’s 

speakers. Framed by the linguistic theory of network morphology (NM) and expressed in 

the DATR representation language, the aim is to develop a minimally redundant 

description of the paradigms for twenty present tense verbs. This, in turn, might assist 

interpreters in their efforts to more efficiently and effectively engage, understand, and 

utilize the language. Thus, I believe this work has the potential to fit well within the 

realm of computer assisted language learning (CALL) by being of pedagogical use to 

teachers and of research use to learners. It might also provide a means of spell- or form-
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checking verbs among readers, writers, and translators. In this work, however, I do not 

address natural language processing (NLP) or MT applications. 

 I, of course, am not the first to bring Amharic into conversation with CL. Others, 

perhaps most notably, Michael Gasser (2010; 2011; 2012), have already undertaken an 

immense amount of work on this matter. Moreover, at Addis Ababa University, in 

Ethiopia, many students continue to produce quite a bit of CL research on Amharic 

(Bayou 2000; Bayu 2002; Gebreegziabher 2011; Alemuu 2013; Demelash 2013; and 

Alemu 2013). Yet, to my knowledge, work on the relationship between NM and Amharic 

remains to be undertaken. My hope is that this brief study will fill that gap just a bit and, 

if possible, make some sort of lasting contribution to the fields of CL and Amharic 

studies  
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Chapter 1: A Brief Overview of Amharic 
 
 Amharic, a sister language of Tigrinya, is the national language of Ethiopia 

(Tadross and Teklu 2015: 9). It descended from Ge’ez, which is now a strictly liturgical 

variety. Amharic belongs in the Afro-Asiatic language family and is characterized by 

most as a Semitic language. Through language contact, however, it has also acquired a 

number of Cushitic features (Leslau 1945: 59-82; and Little 1974: 267-73).2 

Impressively, Amharic boasts nearly 26 million global speakers today and, over the last 

several decades, has received quite a bit of interest from linguists. 

 In addition to Amharic’s fascinating script, the alphabet—or fidel—is what 

linguists often refer to as an abugida. This stands in contrast to Février’s (1995: 330) 

earlier label of “neosyllabary” as well as Householder’s (1959: 379-83) notion of 

“pseudo-alphabet.” In reaching an understanding of what an abugida is, a helpful place to 

begin is with Lyovin’s et al. (2017: 43) note that, “In perhaps all syllabically organized 

phonemographies, consonants are treated as more basic entities than vowels are.” In other 

scripts, however, “vowels are represented, but are graphically subordinated to any 

preceding consonant” (43).  Each letter (or orthographic representation), then, typically 

consists of a consonant plus a specific vowel. Whereas the consonant always retains the 

same sound (but may morph or modify orthographically), the vowel sound changes (cf. 

Halcomb 2015). This type of writing system is what Daniels (1990: 731) refers to as an 

abugida.  

Unlike English, for instance, where each individual letter stands on its own 

regardless of whether it is a consonant or vowel, in Amharic each consonant self-contains 

                                                 
2 It is worth mentioning that, while Amharic is not considered on its own in Zaborski (1975: 1-183), it is 
used comparatively on numerous occasions and, as such, the work may prove beneficial for some. 
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the vowel (with the exception of the two vowels, አ (Alf) and ዐ (‘Ayn), that essentially 

function as consonantal placeholders). Thus, only a character is written when 

representing a consonant-vowel pair. For example, in English one would need two 

characters to form the word ‘he,’ namely the consonant h and the vowel e. In Amharic, if 

one wanted to write the orthographic equivalent of ‘he,’ they would simply write ሀ. Here, 

one character does the job whereas English would require two. Since there are seven 

vowels in the fidel, each representing its own “order,” the shape of the character 

essentially remains the same but takes on a minor change depending on which of the 

seven orders (or vowels) it is working in tandem with. The seven orders, according to the 

IPA, are represented by a or ε, u, i, ɐ, e, ɪ, o.3 Thus, the letter representing h is going to 

slightly change according to each “order” (listed here in sequence) as follows: ሀ | ha, ሁ | 

hu, ሂ | hi, ሃ | he, ሄ | hɐ, ህ | hɪ, ሆ | ho. 

 It should be noted here that the “sixth order” forms (e.g. ህ, ል, ሕ) are able to, 

depending on their position in the word, either keep or lose the vowel both phonetically 

and orthographically. A good rule of thumb is that “sixth order” forms defining a syllable 

or word boundary drop the vowel. This, however, does not always happen and, so, one 

must do due diligence to discern whether or not this is occurring with individual words 

on a case-by-case basis. 

 Along with these orthographical principles of Amharic, another oft-discussed 

feature of this Semitic-based language, especially with regard to the verb system, is its 

root-and-pattern system of morphology (RPM) (Schluter 2008: 287-301). Amberber 

(2008: 83) describes RPM as being “characterised by a root that consists of consonantal 

radicals and a pattern that comprises consonantal positions and vowels. In general, the 
                                                 
3 For either a broad or narrow (i.e. non-IPA) English transliteration see Halcomb (2015).  
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roots encode lexical meaning, whereas the patterns encode grammatical meaning.” I offer 

here an example of the root for the word ‘begin,’ whose Amharic radicals are ጀመረ | d͡ʒ-

m-r-.4 It is important to note that, in the immediately preceding parentheses, the - 

represents a missing vowel which, in this case, is simply an ε. Thus, ጀመረ results in the 

transliteration d͡ʒεmεrε. On the one hand, the consonants, representing the root (or 

lexeme), encode the lexical meaning ‘begin.’ On the other hand, the vowels, representing 

the pattern, encode grammatical meaning, that is, they convey things like tense, aspect, 

mood, and person (the -ε-ε-ε or -1-1-1 or –v-v-v pattern here represents a PRF IND 3MS 

form resulting in the specific meaning ‘he began’). 

 I should point out here that, in Amharic, gemination is a topic that has received 

much attention. It is not within the scope of this project to address it in great length, but it 

is worthy of a brief comment. As Fabri et al. (2014: 6) note, “most words contain at least 

one geminated consonant, and spoken Amharic lacking gemination sounds quite 

unnatural.” They continue, “there are relatively few minimal pairs because of 

redundancy” and syntax “must be relied on to disambiguate these words” (6-7). In his 

Reference Grammar of Amharic (1995: 12-13), Leslau gives fifteen examples (e.g. ገና | 

ɡana ‘still’ - ገና | ɡanna ‘Christmas’ and ዋና | wana ‘swimming’ - ዋና | wanna ‘chief’). In 

his Amharic Textbook (1968: 5), Leslau also recycles a few of those examples and offers 

a handful of additional ones. As the work of Anberbir and Takara (2009: 47) 

demonstrates, when it comes to a computational approach of Amharic, “The lack of 

orthography of Amharic to show geminates is the main problem.” Indeed, they developed 

their own gemination mark (‘) to attempt to account for this. Rather than insert foreign 
                                                 
4 Since each - represents an e here, that is, the vowel of the “first order,” one could replace the - with a 1. 
Such a practice is not uncommon in scholarly Amharic literature. Thus, instead of d͡ʒ-mm-r-, one could 
write d͡ʒ1mm1r1. Or, one could simply remove the - or 1 and write d͡ʒmmr, which is also common. 
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marks like this one into the orthography, which might be confusing to readers since it has 

not received widespread acceptance, I have chosen to leave the Amharic as it stands. 

Even so, I have also opted to include gemination in the transliterations. In Chapter 5, I 

have included a brief discussion of gemination within my theory as it pertains to the verb 

patterns considered in this project. 

 The final item to consider in this section is the notion of affixes, specifically 

prefix-suffix pairs. Because I am focusing on present tense verbs in Amharic, both 

prefixes and suffixes require attention. Specifically, in the simple present, Amharic 

prefixes pair with suffixes denote to grammatical gender and number. With regard to 

gender, in Amharic there is no “neuter” grammatical gender and masculine is the default. 

Moreover and interestingly, in the first person singular there is no gender distinction (i.e. 

grammatical gender is “common,” which may have to do with indexicality (Yasatuda 

2010) or indicate the decrease in importance of grammatical gender in Amharic (Kramer 

2014). I should note, too, that in formal descriptions of Amharic, as with other Semitic 

languages such as Hebrew, it is standard to treat the PRF 3MS as the lexical form. 

Because my interest is focused more on present tense verbs, I have chosen not to use that 

as my own starting point. 

Continuing the line of thought just above, the relevant affixed affixes with their 

particular grammatical encodings (along with person) are: እ...አለሁ | ɪ...alɛhu (1CS);5 

ት...ለህ | tɪ...alɛ (2MS); ት...ሻል | tɪ...alɛʃ (2FS); ይ...አል | jɪ...al (3MS); ት...ለች | tɪ...lɛt͡ ʃ (3FS); 

እን...ለን | ɪnnɪ...lɛn (1CP); ት...ላችሁ | tɪ...lat͡ ʃhu (2CP); and ይ...ሉ | jɪ...lu (3CP). Essentially, 

one attaches these various suffixes to the end of the lexeme to denote the grammatical 
                                                 
5 It is important to note that the አ here, which is a consonantal placeholder, is often assimilated into the 
preceding consonant-vowel character (via sandhi), thereby forming a “fourth order” form. This, in fact, 
happens repeatedly throughout the paradigm. 
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meaning they want to encode. Thus, if one takes the PRF 3MS form ጀመረ | d͡ʒεmmεrε 

(‘he began’) and wishes to say instead ‘I begin,’ they do so by changing the pattern and 

adding the appropriate suffix, namely, አለሁ | alɛhu. The resultant form is እጀምራለሁ | 

ɪd͡ʒεmmɪralɛhu.6 I have included the above data, along with pertinent additional 

information, in a table below for ease of viewing.  

Paradigm of መጀመር | mεd͡ʒεmεr (inf.) ‘to begin’ (Table 1) 
 

Person, Gender, 
Number 

Prefix Root & Pattern 
1-66-4 

Suffix  Final Form 
  

1, Comm, Sg 
‘I begin’ 

እ 
ɪ 

 
 
 
 

ጀምሯ 
+ d͡ʒεmmɪra + 

ለሁ 
lεhu = 

 እጀምሯለሁ 
ɪd͡ʒεmmɪralεhu 

2, Masc, Sg 
‘You begin’ 

ት 
tɪ 

ለህ 
lεh = 

ትጀምሯለህ 
tɪd͡ʒεmmɪralε 

2, Fem, Sg 
‘You begin’ 

ት 
tɪ 

ለሽ  
lεʃ = 

ትጀምሯለሽ 
tɪd͡ʒεmmɪralεʃ 

3, Masc, Sg 
‘He/it begins’ 

ይ 
jɪ 

አል  
al = 

ይጀምሯአል 
jɪd͡ʒεmmɪral 

3, Fem, Sg 
‘She begins’7 

ት 
tɪ 

ለች  
lεt͡ ʃ = 

ትጀምሯለች  
tɪd͡ʒεmmɪralεt͡ ʃ 

  

1, Comm, Pl 
‘We begin’ 

እን 
ɪnnɪ 

 
 

ጀምሯ 
+ d͡ʒεmmɪra + 

ለን  
lεn = 

 እንጀምሯለን 
ɪnnɪd͡ʒεmmɪralεn 

2, Comm, Pl 
‘You begin’ 

ት 
tɪ 

ችሁ  
t͡ ʃhu = 

ትጀምሯላችሁ 
tɪd͡ʒεmmɪralat͡ ʃhu 

3, Comm, Pl 
‘They begin’ 

ይ 
jɪ 

ሉ  
lu = 

ይጀምሯሉ 
jɪd͡ʒεmmɪralu 

 
The above overview, although succinct, should contain enough information in order to 

move forward with an NM analysis of Amharic present tense verbs. Before doing that, 

however, there is one last detail that I should mention. In Amharic verbs can, for all 

intents and purposes, be broadly grouped according to the number of their lexical 

radicals. The norm is to consider five categories: uniradicals, biradicals, triradicals, and 

quadriradicals, along with multi-radicals (any lexeme consisting of five or more radicals). 

                                                 
6 This pattern for this is -d͡ʒ-mm-r-l-h, that is, 6d͡ʒ1mm6r4l1h2, where the numbers represent the “order” of 
the vowel. This could be represented in general by simply replacing the numbers with “v” for vowel and 
“C” for consonant (e.g. vCvCCvCvCvC). I use this general representation later in this work. 
7 In Amharic there is no “neuter” grammatical gender and masculine is the default. 
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For present expository purposes, I have chosen to limit my analysis to triradicals 

beginning with consonants only. Now that I have presented these details of the Amharic 

present tense verb system, I turn my attention to NM. 
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Chapter 2: A Brief Overview of Network Morphology 
 
 According to Brown and Hippisley (2012: 6), “Network Morphology is a 

paradigm-based framework: morphological generalizations are gathered at the level of 

the paradigm.” They note that the “fundamental object of enquiry in morphology” in a 

paradigm-based approach “is the lexeme rather than the morpheme” (6). Thus, in NM, the 

notion of the paradigm is central. In addition, and as the name implies, Hippisley asserts 

that in NM, “Morphological knowledge is represented as a network, and this allows for 

an elegant account of inflectional classes and various other dissociations between syntax 

and morphology, such as syncretism and deponency” (2016: 482). As Corbett and Fraser 

(1993: 116) note, NM rests on the assumption that “Lexical information is organized as a 

network whose basic elements are nodes and facts, and whose structure consists of 

relationships between basic elements.” 

This coincides with Stump’s comment that, in NM, a “network of nodes can be 

represented as a hierarchy in which dominated nodes inherit from dominating nodes” 

(2001: 261). That is, a node can inherit facts from another node and, in doing so inherit 

specific features that result in generalizations within the paradigm (261). Thus, as Parker 

Brody has aptly stated, “the paradigm of an inflectional system is generated by 

associating the cells of the paradigm with the morphosyntactic properties they encode. As 

each word passes through the model, it draws on the assumptions of the nodes above it, 

as well as overrides that stipulate irregularities in the system” (2014: 8). This is what 

produces the “elegant account” of inflectional classes that Hippisley refers to and 

corresponds with Stewart’s assertion that, in NM, because lexical classes and subclasses 
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are defined in this way, “this allows generalizations to refer to individual nodes or 

hierarchically related nodes” (2008: 178). 

NM essentially employs the language of object-oriented programming to lay bare 

shared morphological features and make connections between shared lexemes and 

affixes. As such, NM employs a basic inheritance hierarchy of nodes. In NM, the top-

most nodes are dominant. Moreover, there is a principle of “the longest path wins” 

(Hippisley 2010: 36). Stump (2011: 10) points out that this is essentially Panini’s 

Principle (or: the Elsewhere Condition), that is, the idea that each cell or block in a 

paradigm has rules that become ranked. Hippisley (2016: 489-90) echoes this saying, 

“This is the elsewhere statement in lexical phonology, or Paninian default inference, and 

is used to resolve competition among rules. In other words, Network Morphology 

subscribes to the Panini Determinism Hypothesis” (cf. Brown and Hippisley 2012: 22). 

Thus, in an environment where multiple rules could apply, whichever rule has the 

greatest degree of specificity wins, thereby preventing the others from being applied. 

The hierarchy’s top is the “root node” and at its bottom sit the “leaf nodes.” In 

NM the “class nodes” inherit properties from the root node (i.e. the syntactical node).8 A 

node inherits properties from a node that dominates it and the inherited properties are said 

to be defaults. These defaults, however, are subject to overrides—contrasting properties 

specified in a class node. In addition, if there are properties not present in the root node, 

due to variation, for example, a class can have its own properties. In NM, the leaf nodes 

inherit from the class nodes. The leaf node contains entries that include lexical, semantic, 

                                                 
8 Because different forms in a paradigm convey different meanings or functions—what proponents of NM 
often refer to as “features”—they are relevant to syntax. For more on syntax and NM see the Surrey 
Morphology Group’s website, particularly the page on morphosyntactic features: http://www.surrey.ac.uk/ 
LIS/SMG/morphosyntacticfeatures.html#morphosyntacticfeatures. Last accessed 4/6/17. 
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phonological, and morphological information. But for those nodes to manifest, they must 

draw features from one or more class nodes. This “drawing” effect is known as 

inheritance—inheriting properties (or: facts) from higher nodes. The properties inherited 

via paths are represented in Figure 1 below by lines.  

Figure 1, Nodes in Network Morphology 

 
 
The above diagram puts on display the hierarchical and network-based structure of NM. I 

will discuss these matters in relation to DATR in the next section, but it will prove 

beneficial at this point to clarify a bit of relevant terminology. To do this, I will draw on 

the work of Corbett and Fraser (1993: 116-17), as well as Hippisley (2016: 482-83). 

 In NM a node is “a named location at which one or more facts may be stored” 

(Corbett and Fraser 1993: 117). More precisely, these are “inheritable facts” (Hippisley 

2016: 483). Facts themselves consist of attribute:value pairs. It is worth noting, however, 

that the literature on NM often uses the language of path:value pairs, too, to mean the 

same thing. Moreover, at least in terms of coding NM, angle brackets <> represent paths 

(i.e. the means by which an attribute is expressed) and, specifically, path delimiters. This 

path’s value may be atomic, another path, or even a mixture of the two. Here I will 

simply use the language of attribute:value. 
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According to Corbett and Fraser, “A value may be stated directly or referenced 

indirectly by means of another attribute having that value” (Corbett and Fraser 1993: 

118). Attributes (or: paths) “may be atomic” or “consist of a list of atoms” and these 

“increase in specificity from left to right” (118). Similarly, “Values may be atomic or list-

structured, where a list consists of a sequence of atoms” (118). I consider the “atom” to 

be a single or individual property of an attribute or value. While an atom can appear in 

list (or: sequence) form, each atom should be taken on its own merit (e.g. see below: love 

ing where both ‘love’ and ‘ing’ are atoms) (Evans and Gazdar 1996: 169). In order to 

help visualize these rather abstract concepts, below I have provided an example from 

Evans and Gazdar based on the lexeme ‘love,’ in the form of a table (169). Note that, in 

this table, syn represents “syntactic,” “cat” represents “category,” “mor” represents 

“morphological,” and the double equal sign == directs the values assigned to the 

attribute. 

Path/Value Pairs for Love (Table 2) 
attribute path value 

<syn cat> 
<syn type> 
<syn form> 
<mor form> 

== 
== 
== 
== 

verb 
main 
present participle 
love ing 

 
The expected output here would, of course, be ‘loving’ (not loveing). Nevertheless, the 

point of the table is to simply give a more concrete image of what NM starts to look like 

when employed. I will have occasion below to demonstrate how the attribute-path-value 

strings work and factor into the overall NM framework. For now, however, I shall move 

on to a discussion of DATR—NM’s formalism (i.e. formally explicit language that is 

computationally interpretable).  
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Chapter 3: A Brief Overview of DATR 
 
 As already noted, DATR is essentially a lexical representation language that can 

express default inheritance. Thus far, I have not been able to pinpoint any literature in 

which the letters in DATR are discussed as an acronym. It seems to be the case however, 

that DATR is based on PATR or perhaps, its descendant, PATR-ii. The former, 

developed in the mid-1980s, was an acronym for PArsing and TRanslation (Bussmann, 

2006, 870). According to Sikkel (2012: 168), PATR has since “fallen into oblivion” and 

for that reason the letters in its descendant, PATR-ii, “no longer form an acronym.” For 

this reason, DATR is likely not a descendant acronym but merely a name. On the 

interfacing of DATR with PATR, see Kilbury (1991: 137-42). 

 DATR shares many characteristics with Object Oriented Programming (OOP). As 

Seidl et al. note, “object orientation” models were introduced in the 1960s using the 

SIMULA programming language. This language was built “on a paradigm that was as 

natural to humans as possible to describe the world” (2014: 6). As such, the “object-

oriented approach corresponds to the way we look at the real world” taking seriously the 

fact that a) “objects are elements in a system whose data and operations are described,” 

and b) objects “interact and communicate with one another,” thus playing a key role in 

object-oriented approaches (6). It is no coincidence, then, that some of the terminology is 

adopted and used by advocates of NM and DATR. Several terms of significance, 

including a few noted already and a few not yet noted, are worthy of attention at this 

point. Building on the work of Seidl, with specific regard to terminology and concepts, I 

provide these terms and their corresponding definitions in list form below. In addition, I 

offer both a running example of code and its output. 
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• Class: A class defines an attribute or set of attributes as well as a value or set of 

values for a set of objects. To draw on Seidl’s analogy, for instance, “people have 

a name, an address, and a social security number.” As such, the atoms (or: 

instances) of these objects create a group or class (6). Unlike OOP, however, in 

DATR there are no methods (i.e. actions upon an object within a class).   

OPP Example 1: Atoms, Attributes, Classes, and Objects (Table 3) 
Person: 
        <> == yes                                         
        <has name> == yes 
        <has address> == yes 
        <has social> == yes 
        <has wings> == no.    

% Here “Person” is an object while name, address,  
% social, and wings are atoms of that object which,  
% collectively, denote a class. Each atom has an 
% attribute of yes or no but there is also an affirm-; 
% ation of all unspecified properties. 

 
• Object: The end-result of compiling a class’s atoms (or: instances) is an object. 

For example, a name, address, and a social security number are atoms that, 

collectively, denote the object “person” (see above). 

• Encapsulation: This is the act of protecting the internal state of an object against 

unauthorized access or grouping (7). Stated differently, it is like putting an object 

(and hence its atoms) inside a capsule. Importantly, only members of the same 

class or subclass have authorized access to that object. Thus, encapsulation 

prevents objects of different classes from being grouped together. Thus, if a class 

“Car” were to exist, the class “Person” and its atoms could be prevented from 

gaining access to the class it (see below). Likewise, “Car” and its atoms could be 

prevented from gaining access to the class “Person.” 

• Path: Also known as a “Message,” the path allows and is the means by which 

objects communicate with one another. Borrowing from Seidl et al., a path “to an 

object represents a request to execute an operation. The object itself determines 



16 
 

whether and how to execute this operation. The operation is only executed if the 

sender is authorized to call the operation” (7). 

• Inheritance: This is “a mechanism for deriving new classes from existing 

classes” (7-8). For instance, a subclass might derive from an existing (super) class 

and, as such, inherit all of its attributes or it may “define new attributes and/or 

operations, overwrite the implementation of inherited operations, [or] add its own 

code to inherited operations” (8). This allows the “reuse of program or model 

parts (thus avoiding redundancy and errors)…use as a modeling aid through a 

natural categorization of occurring elements, and support for incremental 

development” (8). Important, too, for DATR, are the concepts of direct and 

indirect inheritance. The former, per Keller, simply refers to a value specification 

expressed directly (i.e. it does not draw/inherit from elsewhere) and the latter 

denotes an occasion where “the value is obtained by local inheritance” (1996: 

646). (Note: The % symbol functions to section off comments from code.)  

OPP Example 2: Encapsulation, Inheritance, and Paths (Table 4) 
Person: 
     <> == yes                                         
     <has name> == yes 
     <has address> == yes 
     <has social> == yes 
     <has wings> == no.   
 
Female:  
     <> == Person. 
 
 
 
Car: 
    <has brakes> == yes 
    <has windows> == yes. 
 
 

% Here “Person” is an object while name, address,  
% social, and wings are atoms of that object which,  
% collectively, denote a class. Each atom has an 
% attribute of yes or no but there is also an affirm- 
% ation of all unspecified properties. 
 
 
% Here the class “Female” has an empty attribute  
% the value is set to “Person” and, thus, the path  
% leads it to inherit the defaults from the class  
% “Person.” 
 
% Here the class “Car” has two attributes with set 
% affirmative values. It does not inherit from Person 
% because this theory doesn’t model a connection 
% between a car’s brakes or windows and attributes 
% a person may have. Encapsulation is present. 
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• Override: Also known as “Overload,” in OOP this “enables an operation to be 

defined differently for different types of parameters” (Seidl, 2014: 7). This is a 

significant aspect of DATR. Indeed, when Evans and Gazdar (1996: 167) describe 

DATR as “a rather spartan nonmonotonic language for defining inheritance 

networks with path/value equations,” this seems to be part of what they’re 

referring to. The notion of “nonmonotonic” here appears to be borrowed from the 

field of logic and, more specifically, nonmonotonic reasoning (NR). According to 

Antoniou and Williams (1997: 5), NR “provides formal methods that enable an 

intelligent system to operate adequately when faced with incomplete and 

changing information.” Because NM and DATR are concerned with matters such 

as regularity and semi-regularity as well as lexical-paradigmatic predictability, 

and given that languages are living entities that change, a nonmonotonic approach 

is necessary.  

OPP Example 3: Override (Table 5) 
Person: 
     <> == yes                                         
     <has name> == yes 
     <has address> == yes 
     <has social> == yes 
     <has wings> == no.   
 
Female:  
     <> == Person. 
 
 
 
Car: 
    <has brakes> == yes 
    <has windows> == yes. 
 
 
 
Jane:  

% Here “Person” is an object while name, address,  
% social, and wings are atoms of that object which,  
% collectively, denote a class. Each atom has an 
% attribute of yes or no but there is also an affirm- 
% ation of all unspecified properties. 
 
 
% Here the class “Female” has an empty attribute  
% the value is set to “Person” and, thus, the path  
% leads it to inherit the defaults from the class  
% “Person.” 
 
% Here the class “Car” has two attributes with set 
% affirmative values. It does not inherit from Person 
% because this theory doesn’t model a connection 
% between a car’s brakes or windows and attributes 
% a person may have. Encapsulation is present. 
 
% Here the class “Jane” inherits from the class  
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    <> == Female 
    <has social> == no 
    <is mean> == no. 
 
# hide  Person Female. 
 
# show   
     <has name> 
     <has address> 
     <has social> 
     <has wings> 
     <is mean> 
     <has brakes> 
     <has windows>. 

% “Female,” which inherits from the class “Person” 
% but also has an override where <has social> 
% is not the default “yes” but, rather, overrides it 
% and becomes a “no.” 
% This just hides what does not need to be seen. 
 
% This shows what is necessary. 

 
• Hierarchy: A hierarchy, particularly with regard to classes (i.e. class hierarchy) 

“consists of classes with similar properties” and, as such, generates an inheritance 

tree. The hierarchy of classes are built upon and situated within nodes, with the 

root node being the top-most and default node. The example code provided here 

(see above or below) is structured hierarchically. As Keller (1996: 647) asserts, 

“A DATR hierarchy is defined by means of path-value specifications. Inheritance 

of values permits appropriate generalizations to be captured and redundancy in 

the description of data to be avoided.”  

• Multiple Inheritance: Similar to what is described in OOP as “polymorphism,” 

this is essentially “the ability to adopt different forms” (Seidl, 2014: 8) with 

regard to referencing objects from different classes. I have not included an 

example within a table, but it is easy enough to understand how Jane could inherit 

properties from multiple classes, namely, “Person” and “Car.” 

• Redundancy: In particular, this refers to what OOP programmers refer to as 

“spatial redundancy.” A portion of code is said to exhibit (spatial) redundancy if it 

“frequently makes the same decision because it is reached by the same code path” 
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(Odersky, 2004: 188). In short: redundancy is the unnecessary repetition of code. 

In an effort to keep my code clean, I have not included an example of redundancy 

here. 

Each of these principles is important for understanding, navigating, and working within 

the DATR environment. That, then, brings me to a brief discussion about the platform 

from which I choose to run DATR. To be sure, DATR is compatible with and often used 

in computing environments like Prolog and Python. I, however, use Raphael Finkel’s 

online evaluator.9 Here, one simply pastes in their theory (i.e. code) and presses the 

submit button. In Finkel’s environment one can paste in multiple portions of code or a 

single theory. Likewise, researchers have the option of telling the evaluator to output the 

results in either list format or paradigm format. In the context immediately below, I have 

provided examples of both. In the following chapter, however, I will use the latter. 

Bearing these items in mind, I now turn to the next chapter, which provides my full 

theory along with notation.  

Output of Theory in DATR (Table 6) 
Fancy Formatting / Paradigms Listed Results 

 

Car <has,brakes> yes 
Car <has,windows> yes 

Jane <has,name> yes 
Jane <has,address> yes 
Jane <has,social> no 
Jane <has,wings> no 
Jane <is,mean> no 

Jane <has,brakes> no 
Jane <has,windows> no 

 
  

                                                 
9 Located at http://www.cs.uky.edu/~raphael/linguistics/DATR.cgi. Last accessed 3/16/17. 
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Chapter 4: A DATR Account of Amharic Simple Present Verbs 
 
 As I noted in Chapter 1, in this study I have chosen to limit my analysis to simple 

present verbs of a triradical nature that begin only with consonants. In order to make my 

theory slightly more interesting than it might be otherwise, a detail that will also enable 

me to demonstrate more of the power and versatility of DATR, I am going to also include 

several irregular verbs. In addition to the challenge of transliterating Amharic 

orthographical symbols into Roman characters, there are three particular matters 

stemming from Amharic morphology that my theory can account for, namely, 

phonological change (e.g. deletion/addition), germination, and root-and-pattern 

templates.  

 Concerning the root-and-pattern issue, the verbs I have chosen, which can be 

found in any standard Amharic dictionary, follow four different patterns. The first set has 

a stem that follows a CvCCvCv stem pattern, the second a CvCvCv pattern, the third a 

Cv pattern, and the fourth a CvCvCvCv pattern. DATR easily handles all four of these, 

even a few irregulars (see below). With regard to phonological change, when a sixth 

order I in a stem follows d, n, r, z, or l (all alveolars) deletion occurs. Similarly, when a 

fourth order form follows m, b, l, r, ɡ, q, t or t͡ ʃ, it changes to a third order form and a is 

added (i.e. addition occurs). This actually affects the root-and-pattern template, causing it 

to change. Again, DATR is easily able to account for these changes. In addition, and as I 

mentioned earlier in this work, germination is present in Amharic but not 

orthographically. In my theory I am able to account for gemination, which is not 

represented orthographically in Amharic, by employing transliteration to show where it 

does occur. In my theory I do this by providing a transliteration in IPA. 
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 In this chapter, then, I provide the theory I have developed and also offer notation. 

The theory is, of course, not exhaustive when it comes to the Amharic verb system. It 

does not, for example, take into consideration other tenses, radicals, or even triradical 

forms that begin with vowels. If one wishes to use this code, it is likely that in attempting 

to copy it from this file and pasting it into Finkel’s DATR evaluator will not work. This is 

the case because the word processors will probably introduce interference. Theories 

should be saved as simple text files with UTF8 encoding. 
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% % % % % % % % % % % % % % % % % % % % % % % %  
%Created by T. Michael W. Halcomb       % 
%Version 1: 5/1/17                      % 
%Title: Amharic Verbs            % 
%Purpose: Illustrates inheritance, overrides, alternative values% 
%     of Amharic simple present verbs in DATR      % 
%Email: Michael.Halcomb@AsburySeminary.edu        % 
%Version: 2            % 
% % % % % % % % % % % % % % % % % % % % % % % %  
 
#vars $Cons1: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j. 
#vars $Cons2: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j. 
#vars $Cons3: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j. 
#vars $Cons4: a b t͡ ʃ t͡ ʃ' d φ g ɲ h ɪ d͡ʒ k l m n q r s ʃ t t' w j. 
 
%variable declarations; these variables are the consonants used in the sample verbs and  
% utilized %by the “Stem” node 
 
Mor_Verb: 
  <syn cat> == verb   
  <roman> == Prefix:<> “<stem>” Tense_suffix:<> Agr_suffix:<> 
  <amharic> == TRANSLIT:<“<roman>”>. 
 
%Mor_Verb is the root node of the inheritance network 
%verb denotes the syntactical category  
%<roman> sets the path value to specified items (e.g. prefix followed by stem, etc.) and 
%each of these will be in Roman (IPA) characters; the code, then, is based on the Roman 
%transliteration scheme 
%Prefix:<> calls down to the Prefix node; “<stem>”, Tense_suffix:<>, and Agr_suffix:<> 
%do the same; 
%<amharic> calls down to the TRANSLIT node where the Amharic letters are matched  
%with their Roman counterparts, resulting in the Amharic being transliterated in a letter- 
%-for-letter fashion 
 
Triradicals:  
  <> == Mor_Verb 
  <stem> == Stem:<”<root>”> 
  <vowel1> == ε 
  <vowel2> == ɪ 
  <vowel3> == a 
  <vowel3 2 fem sg simp_pres> == i a. 
 
%This begins the first of the class nodes 
%The Triradicals node, as well as those that follow it (e.g. Triradicals_Alt, 
%Triradicals_Irregular, Triradicals_Irregular2, and Triradicals_Irregular3) all inherit from  
%the root node, which calls down to the Stem node thereby selecting the appropriate 
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%transliteration pattern; specifics concerning vowel patterns are provided here, allowing 
%for different patterns or overrides; note, for example, that each Triradical node has a 
%different vowel pattern and different vowel changes (or a lack thereof)  
 
Triradicals_Alt: 
  <> == Mor_Verb 
  <stem> == Stem2:<”<root>”> 
  <vowel3> == a 
  <vowel3 2 fem sg simp_pres> == i a. 
 
Triradicals_Irregular: 
  <> == Mor_Verb 
  <stem> == Stem3:<”<root>”> 
  <roman> == “<stem>” Agr_suffix:<> 
  <amharic> == TRANSLIT:<”<roman>”>. 
 
Triradicals_Irregular2: 
  <> == Triradicals_Irregular 
  <roman> == “<stem>” Tense_suffix:<> Agr_suffix:<> 
  <root> == a  
  <vowel1> ==. 
 
Triradicals_Irregular3: 
  <> == Triradicals 
  <stem> == Stem4:<”<root>”> 
  <vowel1> == ε 
  <vowel2> == ε 
  <vowel3> == ɪ 
  <vowel4> == a 
  <vowel4 2 fem sg simp_pres> == i a. 
 
Prefix: 
  <1> == ɪ <ɪ> 
  <2> == t ɪ  
  <3> == j ɪ  
  <3 fem> == <2> 
  <ɪ comm pl> == n n ɪ 
  <> ==.   
 
%The Prefix node creates a means of avoiding redundancy in the code due in large part to 
%its economical use of the letter ɪ, which is used in several different environments within 
%the prefix slot 
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Stem: 
  <$Cons1 $Cons2 $Cons3> == $Cons1 “<vowel1>” $Cons2 $Cons2 “<vowel2>” 
$Cons3 “<vowel3>”. 
 
Stem2: 
  <$Cons1 $Cons2 $Cons3> == $Cons1 “<vowel1>” $Cons2 “<vowel2>” $Cons3 
“<vowel3>”. 
 
Stem3: 
  <$Cons1> == $Cons1 “<vowel1>”. 
 
Stem4: 
  <$Cons1 $Cons2 $Cons3 $Cons4> == $Cons1 “<vowel1>” $Cons2 “<vowel2>” 
$Cons3 “<vowel3>” $Cons4 “<vowel4>”. 
 
%The Stem node reveals four distinct verb patterns; this root-and-pattern template forms 
%the basis for the code’s transliterator 
   
Tense_suffix: 
  <> == l l ε 
  <3 masc sg simp_pres> == l 
  <2 comm pl simp_pres> == l l a 
  <3 comm pl simp_pres> == l l u.   
 
%The Tense_suffix node simply indicates the tense suffixes 
 
Agr_suffix: 
  <1 comm sg simp_pres> == h u  
  <2 masc sg simp_pres> == h  
  <2 fem sg simp_pres> == ʃ 
  <3 fem sg simp_pres> == t͡ ʃ 
  <1 comm pl simp_pres> == n 
  <2 comm pl simp_pres> == t͡ ʃ h u 
  <> ==. 
 
%The Agr_suffix node simply indicates the person/number/gender agreement suffixes 
 
TRANSLIT: 
  <a> == አ <> 
  <b a> == ባ <> 
  <b i a> == ቢ አ <> 
  <b ɪ> == ብ <> 
  <b b ɪ> == ብ <> 
  <t͡ ʃ> == ች <> 
  <t͡ ʃt͡ ʃ> == ች <> 
  <t͡ ʃt͡ ʃ a> == ቸ <> 
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  <t͡ ʃt͡ ʃ ɪ> == ቸ <> 
  <t͡ ʃ' a> == ጫ <> 
  <t͡ ʃ' i> == ጪ <> 
  <d a> == ዳ <> 
  <d ε> == ደ <> 
  <φ ε> == ፈ <> 
  <g a> == ጋ <> 
  <g ε> == ገ <> 
  <g g ε> == ገ <> 
  <g i a> == ጊ አ <> 
  <ɲ ɲ> == ኝ <> 
  <h> == ህ <> 
  <h u> == ሁ <> 
  <ɪ> == እ <> 
  <d͡ʒ a> == ጃ <> 
  <d͡ʒ ε> == ጀ <> 
  <d͡ʒ i a> == ጂ አ <> 
  <k ɪ> == ክ <> 
  <k k ε> == ከ <> 
  <k k ɪ> == ክ <> 
  <l> == ል <> 
  <l a> == ላ <> 
  <l i a> == ሊ አ <>   
  <l ɪ> == ል <> 
  <l l a> == ላ <> 
  <l l ɪ> == ል <> 
  <l l ε> == ለ <> 
  <l l u> == ሉ <> 
  <m a> == ማ <> 
  <m ε> == መ <> 
  <m i a> == ሚ አ <> 
  <m ɪ> == ም <> 
  <m m ε> == መ <> 
  <m m i a> == ሚ አ <> 
  <m m ɪ> == ም <> 
  <n> == ን <> 
  <n a> == ና <> 
  <n ε> == ነ <> 
  <n n ε> == ነ <>  
  <n n ɪ> == ን <>  
  <q a> == ቃ <> 
  <q ε> == ቀ <> 
  <q ɪ> == ቅ <> 
  <q i a> == ቂ አ <> 
  <q q ε> == ቀ <>  
  <q q ɪ> == ቅ <>  
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  <r> == ር <> 
  <r a> == ራ <> 
  <r i a> == ር አ <> 
  <s a> == ሳ <> 
  <s ε> == ሰ <>  
  <ʃ> == ሽ <> 
  <ʃ a> == ሻ <> 
  <ʃ ε> == ሸ <>   
  <ʃ i a> == ሺ አ <> 
  <t a> == ታ <> 
  <t ε> == ተ <> 
  <t ɪ> == ት <> 
  <t' ε> == ጠ <> 
  <w> == ው <> 
  <w ε> == ወ <> 
  <w w ε> == ወ <> 
  <j ɪ> == ይ <> 
  <j j ɪ> == ይ <> 
  <> ==. 
 
%The TRANSLIT node is where the Roman characters corresponding to Amharic letters 
%are transliterated 
 
Arrive:  
  <> == Triradicals_Alt 
  <gloss> == arrive 
  <root> == d r s 
  <root 2 fem sg simp_pres> == d r ʃ 
  <vowel1> == ε 
  <vowel2> == .  
 
%Arrive is the first of the leaf nodes; it inherits from the Triradicals_Alt node; it is built 
%on the root “d r s,” which is transliterated into Amharic; note that in the 2 fem sg the s 
%becomes ʃ; note the override in terms of vowel patterning here 
 
Ask:  
  <> == Triradicals 
  <gloss> == ask 
  <root> == t' j q.   
 
%Ask inherits from the Triradicals class and has no irregularities or overrides 
 
Be: 
  <> == Triradicals_Irregular 
  <gloss> == be 
  <root> == n  
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  <vowel1> == ε 
  <roman 1 comm sg simp_pres> == <stem> ɲ ɲ 
  <roman 3 masc sg simp_pres> == <stem> w 
  <roman 3 comm pl simp_pres> == <stem> t͡ ʃt͡ ʃ a w. 
 
%Note the irregularities in Be (irregular in most of the world’s languages) and thus the  
%overrides (roman 1 comm, 3 masc, and 3 comm) used to account for this 
 
Beget:       
  <> == Triradicals_Alt 
  <gloss> == beget 
  <root> == w l d 
  <root 2 fem sg simp_pres> == w l d͡ʒ 
  <vowel1> == ε 
  <vowel2> == .  
   
Begin:  
  <> == Triradicals 
  <gloss> == begin 
  <root> == d͡ʒ m r. 
 
Break:  
  <> == Triradicals 
  <gloss> == break 
  <root> == s b r. 
  
Build: 
  <> == Triradicals 
  <gloss> == build 
  <root> == g n b 
  <vowel2> == ε. 
 
Carry:             
  <> == Triradicals 
  <gloss> == carry 
  <root> == ʃ k m 
  <vowel2> == ε.  
  
Carve:  
  <> == Triradicals 
  <gloss> == carve 
  <root> == w q r. 
  
Exist: 
  <> == Triradicals_Irregular2 
  <gloss> == exist.    
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Have: 
  <> == Exist 
  <gloss> == have 
  <roman 1 comm sg simp_pres> == <stem> Tense_suffix:<> ɲ ɲ 
  <roman 3 masc sg simp_pres> == <stem> Tense_suffix:<> w 
  <roman 3 comm pl simp_pres> == <stem> Tense_suffix:<> t͡ ʃt͡ ʃ a w.  
 
Plant:  
  <> == Triradicals 
  <gloss> == plant 
  <root> == t k l. 
 
Play:               
  <> == Triradicals_Alt 
  <gloss> == play 
  <root> == t͡ ʃ' w t 
  <root 2 fem sg simp_pres> == t͡ ʃ' w t͡ ʃ' 
  <vowel1> == a 
  <vowel2> == ε 
  <vowel3> == a. 
 
Search:              
  <> == Triradicals 
  <gloss> == search 
  <root> == φ l g. 
 
Sit:          
  <> == Triradicals 
  <gloss> == sit 
  <root> == q m t 
  <root 2 fem sg simp_pres> == q m t͡ ʃ' 
  <vowel2> == ε.  
 
Speak:           
  <> == Triradicals 
  <gloss> == speak    
  <root> == n g r 
  <vowel1> == a 
  <vowel2> == ε. 
 
Throw: 
  <> == Triradicals_Irregular3 
  <gloss> == throw    
  <root> == w r w r. 
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Use:        
  <> == Triradicals 
  <gloss> == use 
  <root> == t q m 
  <vowel2> == ε. 
   
Wake: 
  <> == Triradicals_Irregular3 
  <gloss> == wake    
  <root> == q s q s. 
   
Walk:  
  <> == Triradicals 
  <gloss> == walk 
  <root> == r m d 
  <root 2 fem sg simp_pres> == r m d͡ʒ   
  <vowel1> == a 
  <vowel2> == ε. 
 
%Begin show and hide of elements to be shown and hidden 
 
#show: 
  <roman 1 comm sg simp_pres>   
  <roman 2 masc sg simp_pres> 
  <roman 2 fem sg simp_pres> 
  <roman 3 masc sg simp_pres> 
  <roman 3 fem sg simp_pres> 
  <roman 1 comm pl simp_pres> 
  <roman 2 comm pl simp_pres> 
  <roman 3 comm pl simp_pres> 
  <amharic 1 comm sg simp_pres> 
  <amharic 2 masc sg simp_pres> 
  <amharic 2 fem sg simp_pres> 
  <amharic 3 masc sg simp_pres> 
  <amharic 3 fem sg simp_pres>   
  <amharic 1 comm pl simp_pres> 
  <amharic 2 comm pl simp_pres> 
  <amharic 3 comm pl simp_pres>. 
   
#hide: 
Triradicals Triradicals_Alt Triradicals_Irregular Triradicals_Irregular2 Stem Mor_Verb 
TRANSLIT Prefix Tense_suffix Agr_suffix. 
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Chapter 5: Summary & Conclusions 
 

In this thesis I have attempted to computationally reproduce the natural 

transmission of twenty present tense Amharic verbs (i.e. triradicals beginning with 

consonants) as modeled by the language’s speakers. I have rooted my approach in the 

linguistic theory of network morphology (NM) and modeled it using the DATR parsing 

engine. One of my hopes is that this work might assist those wanting to work with 

Amharic in their efforts to more efficiently and effectively engage, understand, and 

utilize the language for a variety of purposes such as learning Amharic, learning about 

Amharic, or perhaps cross-linguistic analysis. As noted earlier, I believe this work has the 

potential to fit well within the realm of computer assisted language learning (CALL) by 

being of pedagogical use to teachers and of research use to learners. Likewise, it might 

also provide a means of spell- or form-checking verbs among readers, writers, and 

translators.  

In the first chapter, I provided an overview of Amharic. Specifically, I discussed 

the fidel as an abugida, the verb system’s root-and-pattern morphology, and how radicals 

of each lexeme interacts with prefixes and suffixes. Following that, in Chapter 2, I 

discussed NM. I drew attention to the fact that NM is concerned with lexemes at the 

paradigm level. I also noted drew attention to the fact that NM, theoretically speaking, 

shares many similarities with OOP. In addition, I provided clarity with regard to a 

handful of key terms used in NM literature. 

An overview of DATR was the focus of Chapter 3. As with the previous chapter, 

here I showed connections with OOP and aimed to shed light on a number of additional 

key terms and concepts. To reiterate, each of the principles addressed there is important 
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for understanding, navigating, and working within the DATR environment. Finally, in 

Chapter 4, I set forth my full theory for parsing twenty present tense Amharic verbs. As 

the code makes clear, I divided those twenty verbs into four sets based on their shared 

morphological features. The first contained a CvCCvCv stem pattern, the second a 

CvCvCv pattern, the third a Cv pattern, and the fourth a CvCvCvCv pattern. For the 

DATR output, please see the Appendix. 

In writing, my main hope is that this project will make a contribution, however 

minimal or sizeable, to the field of Amharic studies in particular and (computational) 

linguistics in general. In terms of scalability, I have been working extensively on writing 

theory for the entire verb system but because it is not yet close to being finished, it will 

not be able to bear fruit until sometime in the future. I do believe, however, that I am off 

to a good start and this project, in and of itself, hopefully stands as a testament to that. 

Considering other binyanim, including those beginning with vowels, would be part of 

such a project. Perhaps a fuller discussion of other morphosyntactic feature sets (e.g. 

gender, number, person, case, definiteness, respect, etc.) would be useful, too. Amharic, 

for instance, has more and less formal verb forms, which grammatical gender factors 

heavily into and, as such, some focus on that might bear fruit. 

As I have already stated, I view this project as a work in progress. While quite a 

bit has been written on Amharic, little has been done in terms of utilizing DATR. I hope 

to do more in that regard particularly with regard to the verb. Thus, I will increase the 

scope of coverage as it pertains to the verb system. Perhaps I will venture into nouns as 

well. As I continue to learn more about the intricacies of DATR, for example, I will be 

able to tighten up the code and make it more sophisticated at least in part by weeding out 
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any looming unnecessary redundancies. As I was finishing up this work, for instance, Dr. 

Greg Stump demonstrated a couple of ways I might begin to do that. Unfortunately, I 

simply did not have time to try to put that into action here. From a theoretically 

standpoint, I am interested in looking deeper into PATR and PATR-ii as well as 

exploring in a more in-depth manner the possible relationship between DATR and OOP. 

As I plan to continue working on this, I hope others will be encouraged and enter 

the fray. This could obviously be extended to other parts of speech in Amharic, especially 

its rich nominal system. Perhaps someone will rise to the occasion and purse such a task. 

At the end of the day, if I have piqued the reader’s attention in either Amharic or DATR 

or even both, then, as minute as that may seem, I believe will have accomplished much. 
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Appendix 
 
 Beginning on the next page is the output of my DATR theory. These paradigms 

were generated using Raphael Finkel’s online DATR evaluator and, as such, are in the 

standard format (layout, color scheme, etc.) it produces. I have arranged the output tables 

in alphabetical order with the Roman forms preceding the Amharic. The abbreviations in 

the table, which, for computational purposes I distinguish from the abbreviations in the 

body of this work and on the Abbreviations page near the end of this document, are 

defined as follows: simp_pres = simple present; sg = singular; pl = plural; comm = 

common; 1, 2, and 3 = first, second, and third person respectively; masc = masculine; and 

fem = feminine. 
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Arrive 
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Ask 
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Be 
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Beget 
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Begin 
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Break 
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Build 
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Carry 
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Carve 
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Exist 
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Have 
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Plant 
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Play 
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Search 
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Sit 
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Speak 
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Throw 
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Use 
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Wake 
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Walk 
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Abbreviations 
 
  The abbreviations below, which are used throughout the body of this work, follow 

the Leipzig glossing format. 

 

1  first person 
2  second person 
3  third person 
C  common (not listed in Leipzig) 
F  feminine 
Inf  infinitve 
M  masculine 
Sg  singular 
Simp_pres simple present tense 
PRF  perfect tense 
Pl  Plural 
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